Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
231
231
232
232
233
233
234
234
235
235
236
236
237
237
238
238
239
239
240
240
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/239.jpg" pagenum="211"/>
                    <arrow.to.target n="note187"/>
                  </s>
                </p>
              </subchap2>
            </subchap1>
            <subchap1>
              <subchap2>
                <p type="margin">
                  <s>
                    <margin.target id="note187"/>
                  LIBER
                    <lb/>
                  SECUNDUS.</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  DE
                    <lb/>
                  MOTU CORPORUM
                    <lb/>
                  LIBER SECUNDUS.
                    <emph.end type="center"/>
                    <lb/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  SECTIO I.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                    <emph type="italics"/>
                  De Motu Corporum quibus reſiſtitur in ratione
                    <lb/>
                  Velocitatis.
                    <emph.end type="italics"/>
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  PROPOSITIO I. THEOREMA I.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                    <emph type="italics"/>
                  Corporis, cui reſiſtitur in ratione velocitatis, motus ex reſiſtentia
                    <lb/>
                  amiſſus eſt ut ſpatium movendo confectum.
                    <emph.end type="italics"/>
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>NAm cum motus ſingulis temporis particulis æqualibus amiſſus
                    <lb/>
                  ſit ut velocitas, hoc eſt, ut itineris confecti particula: erit,
                    <lb/>
                  componendo, motus toto tempore amiſſus ut iter totum.
                    <emph type="italics"/>
                  Q.E.D.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corol.
                    <emph.end type="italics"/>
                  Igitur ſi corpus, gravitate omni deſtitutum, in ſpatiis libe­
                    <lb/>
                  ris ſola vi inſita moveatur; ac detur tum motus totus ſub initio, tum
                    <lb/>
                  etiam motus reliquus poſt ſpatium aliquod confectum: dabitur ſpa­
                    <lb/>
                  tium totum quod corpus infinito tempore deſcribere poteſt. </s>
                  <s>Erit
                    <lb/>
                  enim ſpatium illud ad ſpatium jam deſcriptum, ut motus totus ſub
                    <lb/>
                  initio ad motus illius partem amiſſam. </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  LEMMA I.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                    <emph type="italics"/>
                  Quantitates differentiis ſuis proportionales, ſunt continue propor­
                    <lb/>
                  tionales.
                    <emph.end type="italics"/>
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>Sit A ad A-B ut B ad B-C & C ad C-D, &c. </s>
                  <s>& dividendo
                    <lb/>
                  fiet A ad B ut B ad C & C ad D, &c.
                    <emph type="italics"/>
                  Q.E.D.
                    <emph.end type="italics"/>
                  </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>