Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
231
231
232
232
233
233
234
234
235
235
236
236
237
237
238
238
239
239
240
240
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/240.jpg" pagenum="212"/>
                    <arrow.to.target n="note188"/>
                  </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note188"/>
                  DE MOTU
                    <lb/>
                  CORPORUM</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  PROPOSITIO II. THEOREMA II.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Si Corpori reſiſtitur in ratione velocitatis, & idem ſola vi inſita
                    <lb/>
                  per Medium ſimilare moveatur, ſumantur autem tempora æqua­
                    <lb/>
                  lia: velocitates in principiis ſingulorum temporum ſunt in pro­
                    <lb/>
                  greſſione Geometrica, & ſpatia ſingulis temporibus deſcripta
                    <lb/>
                  ſunt ut velocitates.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Cas.
                    <emph.end type="italics"/>
                  1. Dividatur tempus in particulas æquales; & ſi ipſis parti­
                    <lb/>
                  cularum initiis agat vis reſiſtentiæ impulſo unico, quæ ſit ut velo­
                    <lb/>
                  citas: erit decrementum velocitatis ſingulis temporis particulis ut
                    <lb/>
                  eadem velocitas. </s>
                  <s>Sunt ergo velocitates differentiis ſuis proportio­
                    <lb/>
                  nales, & propterea (per Lem. </s>
                  <s>I. Lib. </s>
                  <s>II.) continue proportionales. </s>
                  <s>
                    <lb/>
                  Proinde ſi ex æquali particularum numero componantur tempora
                    <lb/>
                  quælibet æqualia, erunt velocitates ipſis temporum initiis, ut ter­
                    <lb/>
                  mini in progreſſione continua, qui per ſaltum capiuntur, omiſſo
                    <lb/>
                  paſſim æquali terminorum intermediorum numero. </s>
                  <s>Componuntur
                    <lb/>
                  autem horum terminorum rationes ex æqualibus rationibus termi­
                    <lb/>
                  norum intermediorum æqualiter repetitis, & propterea ſunt æqua­
                    <lb/>
                  les. </s>
                  <s>Igitur velocitates, his terminis proportionales, ſunt in pro­
                    <lb/>
                  greſſione Geometrica. </s>
                  <s>Minuantur jam æquales illæ temporum par­
                    <lb/>
                  ticulæ, & augeatur earum numerus in infinitum, eo ut reſiſtentiæ
                    <lb/>
                  impulſus reddatur continuus; & velocitates in principiis æqualium
                    <lb/>
                  temporum, ſemper continue proportionales, erunt in hoc etiam
                    <lb/>
                  caſu continue proportionales.
                    <emph type="italics"/>
                  Q.E.D.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Cas.
                    <emph.end type="italics"/>
                  2. Et diviſim velocitatum differentiæ, hoc eſt, earum partes
                    <lb/>
                  ſingulis temporibus amiſſæ, ſunt ut totæ: Spatia autem ſingulis
                    <lb/>
                  temporibus deſcripta ſunt ut velocitatum partes amiſſæ, (per Prop. </s>
                  <s>
                    <lb/>
                  I. </s>
                  <s>Lib II.) & propterea etiam ut totæ.
                    <emph type="italics"/>
                    <expan abbr="q.">que</expan>
                  E. D.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corol.
                    <emph.end type="italics"/>
                  Hinc ſi Aſymptotis rectangulis
                    <emph type="italics"/>
                  ADC, CH
                    <emph.end type="italics"/>
                  deſcribatur
                    <lb/>
                  Hyperbola
                    <emph type="italics"/>
                  BG,
                    <emph.end type="italics"/>
                  ſintque
                    <emph type="italics"/>
                  AB, DG
                    <emph.end type="italics"/>
                  ad Aſymptoton
                    <emph type="italics"/>
                  AC
                    <emph.end type="italics"/>
                  perpen­
                    <lb/>
                  diculares, & exponatur tum corporis velocitas tum reſiſtentia Me­
                    <lb/>
                  dii, ipſo motus initio, per lineam quam­
                    <lb/>
                    <figure id="id.039.01.240.1.jpg" xlink:href="039/01/240/1.jpg" number="141"/>
                    <lb/>
                  vis datam
                    <emph type="italics"/>
                  AC,
                    <emph.end type="italics"/>
                  elapſo autem tempore ali­
                    <lb/>
                  quo per lineam indefinitam
                    <emph type="italics"/>
                  DC:
                    <emph.end type="italics"/>
                  exponi
                    <lb/>
                  poteſt tempus per aream
                    <emph type="italics"/>
                  ABGD,
                    <emph.end type="italics"/>
                  & ſpa­
                    <lb/>
                  tium eo tempore deſcriptum per lineam
                    <lb/>
                    <emph type="italics"/>
                  AD.
                    <emph.end type="italics"/>
                  Nam ſi area illa per motum puncti
                    <lb/>
                    <emph type="italics"/>
                  D
                    <emph.end type="italics"/>
                  augeatur uniformiter ad modum tempo-</s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>