Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
231
232
233
234
235
236
237
238
239
240
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/240.jpg
"
pagenum
="
212
"/>
<
arrow.to.target
n
="
note188
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note188
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO II. THEOREMA II.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Corpori reſiſtitur in ratione velocitatis, & idem ſola vi inſita
<
lb
/>
per Medium ſimilare moveatur, ſumantur autem tempora æqua
<
lb
/>
lia: velocitates in principiis ſingulorum temporum ſunt in pro
<
lb
/>
greſſione Geometrica, & ſpatia ſingulis temporibus deſcripta
<
lb
/>
ſunt ut velocitates.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
1. Dividatur tempus in particulas æquales; & ſi ipſis parti
<
lb
/>
cularum initiis agat vis reſiſtentiæ impulſo unico, quæ ſit ut velo
<
lb
/>
citas: erit decrementum velocitatis ſingulis temporis particulis ut
<
lb
/>
eadem velocitas. </
s
>
<
s
>Sunt ergo velocitates differentiis ſuis proportio
<
lb
/>
nales, & propterea (per Lem. </
s
>
<
s
>I. Lib. </
s
>
<
s
>II.) continue proportionales. </
s
>
<
s
>
<
lb
/>
Proinde ſi ex æquali particularum numero componantur tempora
<
lb
/>
quælibet æqualia, erunt velocitates ipſis temporum initiis, ut ter
<
lb
/>
mini in progreſſione continua, qui per ſaltum capiuntur, omiſſo
<
lb
/>
paſſim æquali terminorum intermediorum numero. </
s
>
<
s
>Componuntur
<
lb
/>
autem horum terminorum rationes ex æqualibus rationibus termi
<
lb
/>
norum intermediorum æqualiter repetitis, & propterea ſunt æqua
<
lb
/>
les. </
s
>
<
s
>Igitur velocitates, his terminis proportionales, ſunt in pro
<
lb
/>
greſſione Geometrica. </
s
>
<
s
>Minuantur jam æquales illæ temporum par
<
lb
/>
ticulæ, & augeatur earum numerus in infinitum, eo ut reſiſtentiæ
<
lb
/>
impulſus reddatur continuus; & velocitates in principiis æqualium
<
lb
/>
temporum, ſemper continue proportionales, erunt in hoc etiam
<
lb
/>
caſu continue proportionales.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
2. Et diviſim velocitatum differentiæ, hoc eſt, earum partes
<
lb
/>
ſingulis temporibus amiſſæ, ſunt ut totæ: Spatia autem ſingulis
<
lb
/>
temporibus deſcripta ſunt ut velocitatum partes amiſſæ, (per Prop. </
s
>
<
s
>
<
lb
/>
I. </
s
>
<
s
>Lib II.) & propterea etiam ut totæ.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
Hinc ſi Aſymptotis rectangulis
<
emph
type
="
italics
"/>
ADC, CH
<
emph.end
type
="
italics
"/>
deſcribatur
<
lb
/>
Hyperbola
<
emph
type
="
italics
"/>
BG,
<
emph.end
type
="
italics
"/>
ſintque
<
emph
type
="
italics
"/>
AB, DG
<
emph.end
type
="
italics
"/>
ad Aſymptoton
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
perpen
<
lb
/>
diculares, & exponatur tum corporis velocitas tum reſiſtentia Me
<
lb
/>
dii, ipſo motus initio, per lineam quam
<
lb
/>
<
figure
id
="
id.039.01.240.1.jpg
"
xlink:href
="
039/01/240/1.jpg
"
number
="
141
"/>
<
lb
/>
vis datam
<
emph
type
="
italics
"/>
AC,
<
emph.end
type
="
italics
"/>
elapſo autem tempore ali
<
lb
/>
quo per lineam indefinitam
<
emph
type
="
italics
"/>
DC:
<
emph.end
type
="
italics
"/>
exponi
<
lb
/>
poteſt tempus per aream
<
emph
type
="
italics
"/>
ABGD,
<
emph.end
type
="
italics
"/>
& ſpa
<
lb
/>
tium eo tempore deſcriptum per lineam
<
lb
/>
<
emph
type
="
italics
"/>
AD.
<
emph.end
type
="
italics
"/>
Nam ſi area illa per motum puncti
<
lb
/>
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
augeatur uniformiter ad modum tempo-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>