Cardano, Girolamo
,
De subtilitate
,
1663
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
231
232
233
234
235
236
237
238
239
240
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
page
|<
<
of 403
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.010869
">
<
pb
pagenum
="
593
"
xlink:href
="
016/01/240.jpg
"/>
æqualis. </
s
>
<
s
id
="
s.010870
">Quadrilaterum quod illi inſcribitur,
<
lb
/>
duos angulos ex aduerſo collocatos, duobus
<
lb
/>
rectis æquales ſemper habet. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010871
">Duóque eiuſdem rectangula ex oppoſi
<
lb
/>
tis lateribus conſtantia, rectangulo diame
<
lb
/>
trorum quadrilateri pariter accepta ſunt
<
lb
/>
æqualia. </
s
>
<
s
id
="
s.010872
">Quadrilateri verò quòd circulo
<
lb
/>
circumſcribitur, duo latera oppoſita duobus
<
lb
/>
reliquis ſibi inuicem oppoſitis ſunt æqua
<
lb
/>
lia. </
s
>
<
s
id
="
s.010873
">Eſt verò capaciſſima figurarum pro am
<
lb
/>
bitus ratione. </
s
>
<
s
id
="
s.010874
">Omnéſque figuræ in eo con
<
lb
/>
tentæ, capaciſſimæ earum quæ ſub eiſdem
<
lb
/>
lateribus contineri poſſunt: figuræ verò in
<
lb
/>
illo æquilatere etiam ſunt æquiangulæ. </
s
>
<
s
id
="
s.010875
">Pun
<
lb
/>
ctum habet in medio, à quo omnes lineæ,
<
lb
/>
vſque ad circumferentiam ductæ, æquales
<
lb
/>
ſunt. </
s
>
<
s
id
="
s.010876
">Si extra ipſum punctus figatur, lineæ
<
lb
/>
quotquot ad aduerſam circumferentiæ par
<
lb
/>
tem ducentur, ductæ in partem exteriorem
<
lb
/>
rectangulum efficient æquale quadrato con
<
lb
/>
tingentis ex eodem puncto. </
s
>
<
s
id
="
s.010877
">Quod ſi diame
<
lb
/>
ter producatur extrà quantumlibet, alia ve
<
lb
/>
rò diametro in centro ſecetur ad rectos, ex
<
lb
/>
huius fine diuiſa portione quarta circumfe
<
lb
/>
rentiæ in quotquot æquales partes, per ea
<
lb
/>
rum vltimam recta ducatur ad eam quæ ex
<
lb
/>
terius in directo diametri adiacet, erit ipſa
<
lb
/>
diametro adiacens æqualis omnibus rectis
<
lb
/>
ex diuiſionum periferiæ punctis ductis per
<
lb
/>
pendicularibus in ſubiectam diametrum, vſ
<
lb
/>
que ad aduerſam circumferentiæ partem,
<
lb
/>
quæ quidem lineæ omnes, vt palam eſt dia
<
lb
/>
metro, quæ exterius eſt productæ æquidi
<
lb
/>
ſtant. </
s
>
<
s
id
="
s.010878
">Quod ſi ab eadem extremitate diame
<
lb
/>
tros lineæ quotquot, ſeu intrà, ſeu extrà, ad
<
lb
/>
adiacentem quidam extrà, ad circumferen
<
lb
/>
tiæ verò partem alteram intrà ducantur,
<
lb
/>
erunt in exterioribus rectangula ex tota li
<
lb
/>
nea in partem intercluſam periferia circuli
<
lb
/>
& in interioribus ex tota in partem reliqua
<
lb
/>
diametro ad rectos ſtante intercluſam qua
<
lb
/>
drato circulo inſcripto ſemper æqualia. </
s
>
<
s
id
="
s.010879
">Quę
<
arrow.to.target
n
="
marg1525
"/>
<
lb
/>
verò circulo, hyperboli, & defectioni com
<
lb
/>
munes ſunt, hæ ſunt. </
s
>
<
s
id
="
s.010880
">Ducta ex contingente
<
lb
/>
perpendicularis ſuper diametrum iacentem
<
lb
/>
in directo puncti, ex quo contingens ducta
<
lb
/>
eſt, partes diametros ſub eadem proportione
<
lb
/>
diuidit, ſub qua tota linea ex puncto è quo
<
lb
/>
contingens producta eſt ad centrum circuli
<
lb
/>
veniens, vſque ad alteram circumferentiæ
<
lb
/>
partem, ad partem exteriorem ſe habet. </
s
>
<
s
id
="
s.010881
">Se
<
lb
/>
midiametros quoque proportione media eſt,
<
lb
/>
inter eam quæ à centro ad punctum exte
<
lb
/>
rius, & eam quę à centro ad locum vbi cadit
<
lb
/>
perpendicularis ex loco contingentis ſuper
<
lb
/>
eandem diametrum. </
s
>
<
s
id
="
s.010882
">Cùm verò à terminis
<
lb
/>
diametri duæ contingentes ducuntur, ab eiſ
<
lb
/>
dem verò punctis per idem punctum cir
<
lb
/>
cumferentiæ mutuò ad alteram contingen
<
lb
/>
tem, erit quod ſub partibus contingentium
<
lb
/>
his poſtremis lineis terminatarum rectan
<
lb
/>
gulum continetur æquale quadrato dia
<
lb
/>
metri.
<
lb
/>
<
arrow.to.target
n
="
marg1526
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010883
">
<
margin.target
id
="
marg1525
"/>
Circulo, &
<
lb
/>
hyperboli, ac
<
lb
/>
defectioni
<
lb
/>
communes
<
lb
/>
proprietates.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010884
">
<
margin.target
id
="
marg1526
"/>
Corporum
<
lb
/>
creatio.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010885
">Cùm ſemicirculus fixa diametro circum
<
lb
/>
ducitur donec ad locum ſuum redeat, fit cor
<
lb
/>
pus quod Sphæra vocatur. </
s
>
<
s
id
="
s.010886
">Quòd ſi ſit por
<
lb
/>
tio ſemicirculo minor, fit corpus ouo ſimile,
<
lb
/>
quódque ouale dici poteſt. </
s
>
<
s
id
="
s.010887
">A maiore autem
<
lb
/>
portione factum nomen non habet. </
s
>
<
s
id
="
s.010888
">Sed ſi
<
lb
/>
rectangulum quadrilaterum eodem modo
<
lb
/>
circumducatur, fit cylindrus, quem colum
<
lb
/>
nam appellare licet. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010889
">At ſi rectangulus trigonus eodem modo
<
lb
/>
altero laterum rectum angulum continen
<
lb
/>
tium fixo, reliquo ſuper planum extenſo, fit
<
lb
/>
conus rectus, ſeu pyramis. </
s
>
<
s
id
="
s.010890
">Huius tres ſunt
<
lb
/>
ſpecies, iuxta laterum rectum angulum con
<
lb
/>
tinentium totidem differentias. </
s
>
<
s
id
="
s.010891
">Nam ſi la
<
lb
/>
tera ſint æqualia, fit rectus rectangulus co
<
lb
/>
nus. </
s
>
<
s
id
="
s.010892
">Si maius quod fixum eſt latus, acutus
<
lb
/>
rectus conus. </
s
>
<
s
id
="
s.010893
">Quòd ſi maius ſit latus quod
<
lb
/>
circumuoluitur, fit rectus obtuſus conus.
<
lb
/>
</
s
>
<
s
id
="
s.010894
">Rectum conum voco ad differentiam illo
<
lb
/>
rum, quorum inclinata eſt ſummitas, nec ba
<
lb
/>
ſis circulus eſt. </
s
>
<
s
id
="
s.010895
">Omnis igitur coni recti pri
<
lb
/>
mùm baſis eſt circulus, quo plano inſidet,
<
lb
/>
ſeu obtuſus, ſeu rectangulus ſit, ſeu acutus,
<
lb
/>
oxygoniuſve. </
s
>
<
s
id
="
s.010896
">Punctus autem coni ſupremus,
<
lb
/>
vertex dicitur. </
s
>
<
s
id
="
s.010897
">Ex vertice ad centrum baſis
<
lb
/>
ducta, vocatur coni axis. </
s
>
<
s
id
="
s.010898
">Quòd ſi ſuper axem
<
lb
/>
conus plana ſuperficie, ſeu plano (vt breuius
<
lb
/>
dicam) diuidatur, figura ex plano, quæ intra
<
lb
/>
conum continetur, ſemper eſt iſoſceles trian
<
lb
/>
gulus, quem axis coni ſemper per æqualia
<
lb
/>
in duos trigonos diuidit: quorum quilibet eſt
<
lb
/>
orthogonius: æquilaterus verò æqualis, &
<
lb
/>
æquiangulus triangulo illi à quo conus fa
<
lb
/>
bricatus eſt. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010899
">In prima igitur figura ſit orthogonius tri
<
lb
/>
gonus ADC, ex cuius circumductu fiat co
<
lb
/>
nus rectus A B C, cuius baſis eſt circulus
<
lb
/>
BECF, ex illius centro D A linea, quæ fuit
<
lb
/>
latus fixum trigoni, vocatur axis coni, eiúſ
<
lb
/>
que extremitas ſuperior punctus, videlicet
<
lb
/>
A vocatur vertex coni. </
s
>
<
s
id
="
s.010900
">Si igitur planum di
<
lb
/>
uidat conum ſuper axe AD, pars plani ABC
<
lb
/>
<
figure
id
="
id.016.01.240.1.jpg
"
xlink:href
="
016/01/240/1.jpg
"
number
="
95
"/>
<
lb
/>
intra conum contenta, erit triangulus iſoſ
<
lb
/>
celes A B C quem palam diuidere conum
<
lb
/>
per æqualia. </
s
>
<
s
id
="
s.010901
">Ipſum verò triangulum ab
<
lb
/>
axe coni AD, diuidi in duos triangulos or
<
lb
/>
thogonios A D B, & A C D, quorum qui
<
lb
/>
libet æqualis eſt æquilaterúſque, atque
<
lb
/>
æquiangulus trigono A D C primo, ex cu
<
lb
/>
ius circumductu factus eſt conus. </
s
>
<
s
id
="
s.010902
">Si igitur
<
lb
/>
latus A D, æquale ſit lateri DC, vocabitur
<
lb
/>
conus rectus rectangulus: & ſi A D maior
<
lb
/>
eſt DC, vocabitur conus acutus rectus: &
<
lb
/>
AD ſit minor DC, vocabitur conus rectus
<
lb
/>
obtuſus. </
s
>
<
s
id
="
s.010903
">Quanquam hæc diuiſio fermè ſit ſu
<
lb
/>
perflua: nam quæcunque dicuntur, com
<
lb
/>
munia erunt omni cono, dummodo re
<
lb
/>
ctus ſit, ſeu ſit rectangulus, ſeu acutus, ſeu
<
lb
/>
obtuſus. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010904
">Cum verò conus rectus (deinceps
<
expan
abbr
="
autẽ
">autem</
expan
>
bre
<
arrow.to.target
n
="
marg1527
"/>
<
lb
/>
uitatis cauſa conum dixiſſe ſufficiat,
<
expan
abbr
="
quãdo-
">quando-</
expan
>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>