Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
231
232
233
234
235
236
237
238
239
240
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001560
">
<
pb
pagenum
="
200
"
xlink:href
="
028/01/240.jpg
"/>
<
emph
type
="
italics
"/>
deducam: quamvis iam etiam aliunde id haberes; ex eo nimi
<
lb
/>
rùm, quod diuiſo, vt libet, in parteis æqualeis tempore, aut
<
lb
/>
ſpatio, ſemper impoßibile ſit, vt velocitas ſecundæ partis præ
<
lb
/>
cisè dupla ſit totius velocitatis per priorem partem acquiſitæ:
<
lb
/>
quod ex tuis etiam principiis anteà numero
<
emph.end
type
="
italics
"/>
17.
<
emph
type
="
italics
"/>
euidenter de
<
lb
/>
monſtratum eſt.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001561
">Et ſæpe repetij, & repetere ſæpiùs cogis me, quæ
<
lb
/>
ſtionem non eſſe, an impoſſibile ſit velocitatem per
<
lb
/>
ſecundam partem eſſe præcisè duplam velocitatis per
<
lb
/>
primam: ſed id-ne ſequatur ex admiſſo principio, quòd
<
lb
/>
velocitates vt ſpatia ſe habeant. </
s
>
<
s
id
="
s.001562
">Ego enim ſemper id
<
lb
/>
ſequi conteſtatus ſum: tu non ſequi probaſti nun
<
lb
/>
quam; & perinde ſemper procedis, ac ſi id habendum
<
lb
/>
eſſet nihili; quod ipſum tamen eſt rei caput. </
s
>
<
s
id
="
s.001563
">An, &
<
lb
/>
quomodo aliquid ex meis principijs demonſtraueris;
<
lb
/>
nihil eſt quam obrem heic repetatur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001564
">
<
emph
type
="
italics
"/>
Cæterùm hoc etiam loco erras non mediocriter, dum ex
<
lb
/>
eo, quòd partes NC, & CD eodem tempore percurrun
<
lb
/>
tur, talem gradum velocitatis acquiri concludis ab N in
<
lb
/>
C, qualis acquiritur à C, in D: tunc enim velocitates eſſe
<
lb
/>
vt spatia neceſſe eſt.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001565
">Quàm egregiè elaberis? </
s
>
<
s
id
="
s.001566
">Ego enim cætera inter,
<
lb
/>
quæ non attigiſti, ex eo, quòd priùs admiſiſſes, pro
<
lb
/>
pter progreſſionem Arithmeticam, duorum graduum
<
lb
/>
acquiſitorum in D, vnum acquiſitum ab A, in C, alte
<
lb
/>
rum à C, in D, concluſi te velle velocitatem acquiſi
<
lb
/>
tam ab N in C, eſſe æqualem acquiſitæ à C, in D,
<
lb
/>
quandoquidem tum velles ipſam CD tanto tempore,
<
lb
/>
quanto NC, cuius eſſet dupla, percurri. </
s
>
<
s
id
="
s.001567
">Et quia vi
<
lb
/>
deris non attendiſſe ad conſequutionem, quæ ſatis </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>