Cardano, Girolamo
,
De subtilitate
,
1663
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
241
242
243
244
245
246
247
248
249
250
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
page
|<
<
of 403
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.010904
">
<
pb
pagenum
="
594
"
xlink:href
="
016/01/241.jpg
"/>
quidem per conum rectum, conum ſolùm
<
lb
/>
intelligi volo) diuidetur plano ſuper tri
<
lb
/>
gonum A B C, ad perpendiculum ſtanti,
<
lb
/>
ita quòd tranſeat per aliquem punctum con
<
lb
/>
ſtitutum extra verticem, puta G, tunc vel
<
lb
/>
axis, ſeu dimetiens figuræ intra conum clau
<
lb
/>
ſæ æquidiſtabit baſi ſecans ambo latera
<
lb
/>
trianguli, & tunc figura illa erit neceſſariò
<
lb
/>
circulus, vt in prima figura circulus GH. </
s
>
<
s
id
="
s.010905
">De
<
lb
/>
ſcripſi autem tam baſim, quàm ſuperficiem
<
lb
/>
ſecantem circulos perfectos in prima figura,
<
lb
/>
vt illos agnoſceres. </
s
>
<
s
id
="
s.010906
">In aliis autem ſequen
<
lb
/>
tibus figuris circuli longiores, quàm pro
<
lb
/>
latitudine ſcribentur, vt conus, & ſectiones
<
lb
/>
ex plano ad ſolidi imaginem tranſlati me
<
lb
/>
liùs repræſentari poſſint. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010907
">
<
margin.target
id
="
marg1527
"/>
Creatio
<
lb
/>
quinque fi
<
lb
/>
gurarum in
<
lb
/>
cono.</
s
>
</
p
>
<
figure
id
="
id.016.01.241.1.jpg
"
xlink:href
="
016/01/241/1.jpg
"
number
="
96
"/>
<
p
type
="
main
">
<
s
id
="
s.010908
">Quòd ſi planum illud per G tranſiens, &
<
lb
/>
ad perpendiculum ſupra triangulum ſtans
<
lb
/>
conum ſecans bifariam, nam hoc ſemper eſt
<
lb
/>
neceſſarium, ſecet, & ambo latera trigoni
<
lb
/>
ABC, illius autem figuræ dimetiens non
<
lb
/>
æquidiſtet baſi coni, ſed quaſi inclinetur,
<
lb
/>
fiet ſecunda figura, quæ vocatur Ellipſis. </
s
>
<
s
id
="
s.010909
">Ve
<
lb
/>
lut ſit conus ABCE, cuius triangulus per
<
lb
/>
axem ſit ABC, in coni ſuperficie & latere
<
lb
/>
trianguli punctus præter verticem, quem
<
lb
/>
ſuper G voco, ſicut & planum per G pun
<
lb
/>
ctum, & ad perpendiculum ſtans ſuper trian
<
lb
/>
gulum ABC, & conum in duas partes di
<
lb
/>
uidens ſemper dicatur K. </
s
>
<
s
id
="
s.010910
">Si igitur GH, quæ
<
lb
/>
intra conum clauditur, eſtque pars plani
<
lb
/>
K, habeat axem GH, vt in ſecunda figura,
<
lb
/>
qui ambo latera AB, & A C diuidat, nec
<
lb
/>
tamen æquidiſtet plano baſis BCE, ſed vel
<
lb
/>
ſuprà, vel infra inclinetur, fit figura vocata
<
lb
/>
Ellipſis, ideſt, defectio, quia non vt duæ ſe
<
lb
/>
quentes poteſt in infinitum extendi. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010911
">Si verò plano K per punctum G, ducto,
<
lb
/>
ſecantéque conum fiat figura, cuius axis
<
lb
/>
æquidiſtet tertio lateri, vocabitur figura il
<
lb
/>
la Parabole. </
s
>
<
s
id
="
s.010912
">Veluti is tertia figura plano K
<
lb
/>
diuidente conum figura incluſa in cono,
<
lb
/>
<
figure
id
="
id.016.01.241.2.jpg
"
xlink:href
="
016/01/241/2.jpg
"
number
="
97
"/>
<
lb
/>
quæ eſt G H D F, habeat axem G æquidi
<
lb
/>
ſtantem AB, tertio lateri trigoni, tunc ve
<
lb
/>
cabitur figura illa Parabulæ, id eſt, è regione,
<
lb
/>
quia quantumcunque cum cono ipſo pro
<
lb
/>
ducatur, ſemper eſt è regione alterius lateris.
<
lb
/>
</
s
>
<
s
id
="
s.010913
">Cùm igitur duæ præcedentes figuræ ſecent
<
lb
/>
ambo latera trigoni ABC, hæc & ſequens
<
lb
/>
non ſecant latus AB aduerſum, vt vides. </
s
>
<
s
id
="
s.010914
">Si
<
lb
/>
igitur planum ad perpendiculum ſtans ſuper
<
lb
/>
triangulum A E C, (quod ſemper intelligi
<
lb
/>
volo, ſicut etiam quòd tranſeat per pun
<
lb
/>
ctum extra verticem (non ſecuerit latus
<
lb
/>
illi contrapoſitum, ſecando conum, & ta
<
lb
/>
men illius figuræ, quæ intra conum clau
<
lb
/>
ditur axis, non æquidiſtet tertio lateri, ſic
<
lb
/>
enim eſſet Parabole, nec ſecet latus, vt di
<
lb
/>
xi, contrapoſitum intra conum, quia eſſet
<
lb
/>
Ellipſis, vt dictum eſt, ſed illud latus con
<
lb
/>
trapoſitum ſecet extra conum, tunc dice
<
lb
/>
tur Hyperbole, id eſt exceſſus: quià angu
<
lb
/>
lus axe figuræ, & latere trigoni conten
<
lb
/>
tus, in Hyperbole maior eſt, quàm in Para
<
lb
/>
bule. </
s
>
<
s
id
="
s.010915
">Sit igitur planum ſecans conum bi
<
lb
/>
fariam, & ad perpendiculum ſtans ſupra
<
lb
/>
trigonum A B C, & fiat figura GHF, vt
<
lb
/>
in quarta deſcriptione, & huius figuræ di
<
lb
/>
mittens GD, non ſecet latus AB, intra co
<
lb
/>
num, nec ab illo æquidiſtet, ſed protra
<
lb
/>
ctum occurrat illi extra conum in E, quòd
<
lb
/>
neceſſarium eſt, quandoquidem nec illi
<
lb
/>
æquidiſtat, nec occurrit intra conum, tunc
<
lb
/>
hæc figura vocabitur Hyperbole, quia an
<
lb
/>
gulus AGD, in ea maior eſt, quàm in Pa
<
lb
/>
rabole. </
s
>
<
s
id
="
s.010916
">Ex his iam patet in cono perfe
<
lb
/>
ctionem plani ad perpendiculum ſuper tri
<
lb
/>
gonum conum per axem diuidentis erecti,
<
lb
/>
& per datum punctum præter verticem
<
lb
/>
<
figure
id
="
id.016.01.241.3.jpg
"
xlink:href
="
016/01/241/3.jpg
"
number
="
98
"/>
<
lb
/>
tranſeuntis, quatuor fieri figuras, ſcilicet
<
lb
/>
circulum, Ellipſim, Parabolem, & Hyber
<
lb
/>
bolem, nec poſſe ex vno cono plura gene
<
lb
/>
ra inueniri: nam quintum habet plano
<
lb
/>
diuidente duos conos æquiangulos contra
<
lb
/>
ſe poſitos ad verticem (in quinta figura
<
lb
/>
<
figure
id
="
id.016.01.241.4.jpg
"
xlink:href
="
016/01/241/4.jpg
"
number
="
99
"/>
<
lb
/>
exemplum habes) & tunc fiunt neceſſa
<
lb
/>
riò duæ hyperboles: hæ duæ ab Apol
<
lb
/>
lonio vocantur contrapoſitæ: vt ſi ſint
<
lb
/>
duo coni verticibus iuncti A B C, &
<
lb
/>
A D E, ſic vt lineæ B A E, & C A D, </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>