Cardano, Girolamo, De subtilitate, 1663

List of thumbnails

< >
241
241
242
242
243
243
244
244
245
245
246
246
247
247
248
248
249
249
250
250
< >
page |< < of 403 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.010937">
                <pb pagenum="596" xlink:href="016/01/243.jpg"/>
              quod eò magis fiunt proximæ. </s>
              <s id="s.010938">Et ſufficiat
                <lb/>
              demonſtraſſe de vno, vtpote quòd G & M,
                <lb/>
              ſint propinquiores, quàm S & T: nam tunc
                <lb/>
              patebit quòd vbi magis procedent illæ duæ
                <lb/>
              lineæ, erunt eò proximiores. </s>
              <s id="s.010939">Capiatur igi­
                <lb/>
              tur gratia exempli circulus PSQ, & duca­
                <lb/>
              tur TSR, ita quòd perueniat ad oppoſitam
                <lb/>
              circumferentiæ partem: & ſimiliter duca­
                <lb/>
              tur M G N in ſuperficie H, ita quòd G N,
                <lb/>
              perueniat ad circumferentiam circuli VGX:
                <lb/>
              & ducantur rectè LT, & OM in ſuperficie
                <lb/>
              H, quæ contangent circulos QLP, & XOV,
                <lb/>
              quia ducuntur ex loco contactus: & quia
                <lb/>
              O & M, ſunt in ſuperficie circuli OXV,
                <lb/>
              nam M eſt terminus lineæ NM, quæ eſt in
                <lb/>
              ſuperficie circuli OXV, erit linea OM, in
                <lb/>
              ſuperficie eiuſdem circuli, & ita LT in
                <lb/>
              ſuperficie circuli P L
                <expan abbr="q.">que</expan>
              Sed tales ſuperfi­
                <lb/>
              cies æquidiſtant, quia ambæ à baſi circuli:
                <lb/>
              & ſunt lineæ OM & LT, in ſuperficie K,
                <lb/>
              ambæ: igitur æquidiſtantes. </s>
              <s id="s.010940">Et iam LO
                <lb/>
              & TM æquidiſtant, ſunt enim partes æqui­
                <lb/>
              diſtantium, igitur LT, & OM ſunt æqua­
                <lb/>
              les. </s>
              <s id="s.010941">Et cùm contangant circulos PLQ, &
                <lb/>
              VOX, igitur ex demonſtratis ab Euclide
                <lb/>
              in 3.Elementorum quadratum TL, eſt æqua­
                <lb/>
              le ei quod fit ex TR in TS, & quadratum
                <lb/>
              OM eſt æquale ei quod fit ex MN in MG
                <lb/>
              & quadratum TL, eſt æquale quadrato
                <lb/>
              OM, igitur quòd fit ex TR in TS, eſt æqua­
                <lb/>
              le ei quod fit ex MN in M G. </s>
              <s id="s.010942">Igitur ex de­
                <lb/>
              monſtratis 6.Elementorum ab Euclide pro­
                <lb/>
              portio ST ad GM, eſt vt MN ad TR. </s>
              <s id="s.010943">Sed
                <lb/>
              MN maior eſt TR, quia ſi duceretur per N,
                <lb/>
              ſuperficies æquidiſtans ipſum N, caderet
                <lb/>
              infra R, aliter occurreret K, quia diameter
                <lb/>
              QP, eſt minor XV, & ſuperficies circulorum
                <lb/>
              ſunt æquidiſtantes, igitur ST maior eſt GM.
                <lb/>
              </s>
              <s id="s.010944">Ducuntur igitur S Y & G Z, ad perpendi­
                <lb/>
              culum ſuper EF, & erunt anguli SYT, &
                <lb/>
              GZM æquales quia recti. </s>
              <s id="s.010945">Similiter anguli
                <lb/>
              STY, & GMZ æquales ſunt, quia ST, &
                <lb/>
              GM ſunt æquidiſtantes, ſunt enim ambæ in
                <lb/>
              ſuperficie eadem, quæ eſt H, & in duabus
                <lb/>
              ſuperficiebus æquidiſtantibus circulorum:
                <lb/>
              igitur ex 32. primi elementorum trigoni
                <lb/>
              STY, & GMZ, ſunt æqualium angulorum,
                <lb/>
              quare per quartam ſexti eiuſdem proportio
                <lb/>
              ST ad GM, vt SY ad GZ. </s>
              <s id="s.010946">Sed ST vt pro­
                <lb/>
              batum eſt, maior eſt GM, igitur S Y maior
                <lb/>
              GZ. </s>
              <s id="s.010947">Sed SY eſt minima quæ poſſit duci ex
                <lb/>
              puncto S, ad lineam EF, quia ad perpendi­
                <lb/>
              culum eò quòd omnis alia ducta ab eodem
                <lb/>
              puncto, ad lineam EF, ex quauis parte op­
                <lb/>
              ponitur maiori angulo quàm SY: quia op­
                <lb/>
              poneretur recto, igitur punctus G, eſt proxi­
                <lb/>
              mior lineæ EF, quàm punctus S,
                <lb/>
              quòd erat demonſtrandum. </s>
              <s id="s.010948">Ple­
                <lb/>
              rique deficiunt in hac vltima
                <lb/>
              parte, admittentes paralogiſ­
                <lb/>
              mum. </s>
              <s id="s.010949">Feci igitur conum ex ra­
                <lb/>
              pa, vt conſulit Rabbi Moyſes,
                <lb/>
              & feci ſuperficies K & H, ex pa­
                <lb/>
              pyro, & inſcriptis lineis A C,
                <lb/>
              EF, SG, viſæ ſunt non concur­
                <lb/>
              rentes, vt à latere vides. </s>
              <s id="s.010950">Sed eas
                <lb/>
              niſi ea arte inuentas difficile eſt
                <lb/>
              deſcribere. </s>
            </p>
            <figure id="id.016.01.243.1.jpg" xlink:href="016/01/243/1.jpg" number="101"/>
            <p type="caption">
              <s id="s.010951">
                <emph type="italics"/>
              Lineæ nunquam concurrentes.
                <emph.end type="italics"/>
                <lb/>
                <arrow.to.target n="marg1532"/>
              </s>
            </p>
            <p type="margin">
              <s id="s.010952">
                <margin.target id="marg1532"/>
              Defectionis
                <lb/>
              priuilegia. </s>
              <s id="s.010953">2.</s>
            </p>
            <p type="main">
              <s id="s.010954">Defectionis duo ſunt priuilegia: primum
                <lb/>
              quòd proportio eius ad circuli ſuperficiem
                <lb/>
              eſt, velut rectanguli diametrorum defectio­
                <lb/>
              nis ad rectangulum diametrorum circuli,
                <lb/>
              quod eſt quadratum. </s>
              <s id="s.010955">Secundum ex hoc du­
                <lb/>
              cit originem, quòd proportio defectionis ad
                <lb/>
              defectionem eſt, velut rectangulorum ſub
                <lb/>
              diametris earum propriis contentorum. </s>
            </p>
            <p type="main">
              <s id="s.010956">Paraboles autem priuilegia ſex propria
                <lb/>
              ſunt. </s>
              <s id="s.010957">Primùm, ratio axis partium, in ea eſt,
                <arrow.to.target n="marg1533"/>
                <lb/>
              vt deductarum ex ipſis punctis perpendicu­
                <lb/>
              larium ad paraboles circumferentiam dupli­
                <lb/>
              cata. </s>
              <s id="s.010958">Secundum, cùm fuerit ipſa perpendi­
                <lb/>
              cularis æqualis axis parti, quæ ad verticem
                <lb/>
              ab extremo eiuſdem perpendicularis termi­
                <lb/>
              nabitur, vocabitur ipſa perpendicularis la­
                <lb/>
              tus rectum Paraboles, erítque hæc ſemper
                <lb/>
              talem habens proportionem ex axe ad cir­
                <lb/>
              cumferentiam, qualis eſt perpendicularis ip­
                <lb/>
              ſius ad partem axis, quæ ipſam perpendicu­
                <lb/>
              larem, & verticem ſectionis interiacet: vo­
                <lb/>
              cantur verò hæ lineæ perpendiculares ordi­
                <lb/>
              natæ. </s>
              <s id="s.010959">Manifeſtum eſt igitur, quòd cuilibet
                <lb/>
              parti axis Paraboles, ac ſuæ perpendiculari
                <lb/>
              ſemper eadem linea in continua proportio­
                <lb/>
              ne ſubtenditur. </s>
              <s id="s.010960">Tertium, quòd ſi in ea pun­
                <lb/>
              ctus præter axem ſignetur, ab hoc contin­
                <lb/>
              gens ducatur, huic verò æquidiſtantes plu­
                <lb/>
              rimæ à circumferentia ad circumferentiam
                <lb/>
              ducta ex eodem puncto contactus æquidi­
                <lb/>
              ſtans axi, omnes lineas æquidiſtantes à
                <lb/>
              contingenti ductas per æqualia ſecabit. </s>
              <s id="s.010961">Por­
                <lb/>
              tiones quoque quomodolibet ſumptæ, æqua­
                <lb/>
              les habentes diametros, etiam æquales ſunt.
                <lb/>
              </s>
              <s id="s.010962">Ipſa verò ſuperficies æqualis eſt rectangu­
                <lb/>
              lo ex tota baſi in duas è tribus axis partes.
                <lb/>
              </s>
              <s id="s.010963">Sextum, cùm tres contingentes periferiam
                <lb/>
              Paraboles concidunt, duas quidem extremas,
                <lb/>
              media ſecante, erit proportio partium trium
                <lb/>
              linearum vna, ſcilicet partis inferioris ad
                <lb/>
              ſuperiorem, & ſuperioris alterius ad infe­
                <lb/>
              riorem, & mediæ illarum, quæ ad perife­
                <lb/>
              riam Paraboles terminantur. </s>
            </p>
            <p type="margin">
              <s id="s.010964">
                <margin.target id="marg1533"/>
              Paraboles
                <lb/>
              priuilegia 6</s>
            </p>
            <p type="main">
              <s id="s.010965">Spiralis autem lineæ priuilegia ſex etiam
                <lb/>
              ſunt. </s>
              <s id="s.010966">Primum quidem, quòd ducta contin­
                <lb/>
                <arrow.to.target n="marg1534"/>
                <lb/>
              gens ex fine illius occurrit perpendiculari ex
                <lb/>
              initio, ſemper tantum abſcindens ex conti­n
                <lb/>
              genti, vt proportionem habeat ad circuli ſub
                <lb/>
              eodem ordine periferiam, ſecundum ordinem
                <lb/>
              ſeriei numerorum. </s>
              <s id="s.010967">Vnde patet, quòd portio
                <lb/>
              primæ ſpiralis ex perpendiculari, erit æqua­
                <lb/>
              lis periferiæ primi circuli, & portio perpen­
                <lb/>
              dicularis ex ſecunda ſpirali dupla circuli ſe­
                <lb/>
              cundi periferiæ, & portio ex tertia ſpirali
                <lb/>
              tripla circuli tertij periferiæ, atque ita dein­
                <lb/>
              ceps. </s>
              <s id="s.010968">Secundum, ex quocunque puncto pri­
                <lb/>
              mæ ſpiralis educta contingens, occurrit
                <lb/>
              perpendiculari ex initio eiuſdem dimetien­
                <lb/>
              tis ductæ, tantam ex illa abſcindens par­
                <lb/>
              tem, quanta eſt portio circumferentiæ cir­
                <lb/>
              culi, cuius ſemidiameter eſt linea ex initio
                <lb/>
              lineæ ſpiralis, vſque ad punctum contin­
                <lb/>
              gentis, clauſa inter primam lineam rectam
                <lb/>
              ſpiralis, quæ moueri intelligitur, & locum
                <lb/>
              ad quem per motum peruenerit ipſa ſpi­
                <lb/>
              ralis è directo loci contingentis. </s>
              <s id="s.010969">Eſtque
                <lb/>
              tertium priuilegium, quòd ſpatia ſpira­
                <lb/>
              lium ita ſe habent: primùm quidem vni­
                <lb/>
              tatis, ſecundum ſenarij, tertium duodena­
                <lb/>
              rij, quartum decemocto, atque ita deinceps
                <lb/>
              additione perpetua per ſenarium facta.
                <lb/>
              </s>
              <s id="s.010970">Quartum proportio cuiuſlibet circuli, ad </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>