Cardano, Girolamo
,
De subtilitate
,
1663
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
241
242
243
244
245
246
247
248
249
250
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
page
|<
<
of 403
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.010937
">
<
pb
pagenum
="
596
"
xlink:href
="
016/01/243.jpg
"/>
quod eò magis fiunt proximæ. </
s
>
<
s
id
="
s.010938
">Et ſufficiat
<
lb
/>
demonſtraſſe de vno, vtpote quòd G & M,
<
lb
/>
ſint propinquiores, quàm S & T: nam tunc
<
lb
/>
patebit quòd vbi magis procedent illæ duæ
<
lb
/>
lineæ, erunt eò proximiores. </
s
>
<
s
id
="
s.010939
">Capiatur igi
<
lb
/>
tur gratia exempli circulus PSQ, & duca
<
lb
/>
tur TSR, ita quòd perueniat ad oppoſitam
<
lb
/>
circumferentiæ partem: & ſimiliter duca
<
lb
/>
tur M G N in ſuperficie H, ita quòd G N,
<
lb
/>
perueniat ad circumferentiam circuli VGX:
<
lb
/>
& ducantur rectè LT, & OM in ſuperficie
<
lb
/>
H, quæ contangent circulos QLP, & XOV,
<
lb
/>
quia ducuntur ex loco contactus: & quia
<
lb
/>
O & M, ſunt in ſuperficie circuli OXV,
<
lb
/>
nam M eſt terminus lineæ NM, quæ eſt in
<
lb
/>
ſuperficie circuli OXV, erit linea OM, in
<
lb
/>
ſuperficie eiuſdem circuli, & ita LT in
<
lb
/>
ſuperficie circuli P L
<
expan
abbr
="
q.
">que</
expan
>
Sed tales ſuperfi
<
lb
/>
cies æquidiſtant, quia ambæ à baſi circuli:
<
lb
/>
& ſunt lineæ OM & LT, in ſuperficie K,
<
lb
/>
ambæ: igitur æquidiſtantes. </
s
>
<
s
id
="
s.010940
">Et iam LO
<
lb
/>
& TM æquidiſtant, ſunt enim partes æqui
<
lb
/>
diſtantium, igitur LT, & OM ſunt æqua
<
lb
/>
les. </
s
>
<
s
id
="
s.010941
">Et cùm contangant circulos PLQ, &
<
lb
/>
VOX, igitur ex demonſtratis ab Euclide
<
lb
/>
in 3.Elementorum quadratum TL, eſt æqua
<
lb
/>
le ei quod fit ex TR in TS, & quadratum
<
lb
/>
OM eſt æquale ei quod fit ex MN in MG
<
lb
/>
& quadratum TL, eſt æquale quadrato
<
lb
/>
OM, igitur quòd fit ex TR in TS, eſt æqua
<
lb
/>
le ei quod fit ex MN in M G. </
s
>
<
s
id
="
s.010942
">Igitur ex de
<
lb
/>
monſtratis 6.Elementorum ab Euclide pro
<
lb
/>
portio ST ad GM, eſt vt MN ad TR. </
s
>
<
s
id
="
s.010943
">Sed
<
lb
/>
MN maior eſt TR, quia ſi duceretur per N,
<
lb
/>
ſuperficies æquidiſtans ipſum N, caderet
<
lb
/>
infra R, aliter occurreret K, quia diameter
<
lb
/>
QP, eſt minor XV, & ſuperficies circulorum
<
lb
/>
ſunt æquidiſtantes, igitur ST maior eſt GM.
<
lb
/>
</
s
>
<
s
id
="
s.010944
">Ducuntur igitur S Y & G Z, ad perpendi
<
lb
/>
culum ſuper EF, & erunt anguli SYT, &
<
lb
/>
GZM æquales quia recti. </
s
>
<
s
id
="
s.010945
">Similiter anguli
<
lb
/>
STY, & GMZ æquales ſunt, quia ST, &
<
lb
/>
GM ſunt æquidiſtantes, ſunt enim ambæ in
<
lb
/>
ſuperficie eadem, quæ eſt H, & in duabus
<
lb
/>
ſuperficiebus æquidiſtantibus circulorum:
<
lb
/>
igitur ex 32. primi elementorum trigoni
<
lb
/>
STY, & GMZ, ſunt æqualium angulorum,
<
lb
/>
quare per quartam ſexti eiuſdem proportio
<
lb
/>
ST ad GM, vt SY ad GZ. </
s
>
<
s
id
="
s.010946
">Sed ST vt pro
<
lb
/>
batum eſt, maior eſt GM, igitur S Y maior
<
lb
/>
GZ. </
s
>
<
s
id
="
s.010947
">Sed SY eſt minima quæ poſſit duci ex
<
lb
/>
puncto S, ad lineam EF, quia ad perpendi
<
lb
/>
culum eò quòd omnis alia ducta ab eodem
<
lb
/>
puncto, ad lineam EF, ex quauis parte op
<
lb
/>
ponitur maiori angulo quàm SY: quia op
<
lb
/>
poneretur recto, igitur punctus G, eſt proxi
<
lb
/>
mior lineæ EF, quàm punctus S,
<
lb
/>
quòd erat demonſtrandum. </
s
>
<
s
id
="
s.010948
">Ple
<
lb
/>
rique deficiunt in hac vltima
<
lb
/>
parte, admittentes paralogiſ
<
lb
/>
mum. </
s
>
<
s
id
="
s.010949
">Feci igitur conum ex ra
<
lb
/>
pa, vt conſulit Rabbi Moyſes,
<
lb
/>
& feci ſuperficies K & H, ex pa
<
lb
/>
pyro, & inſcriptis lineis A C,
<
lb
/>
EF, SG, viſæ ſunt non concur
<
lb
/>
rentes, vt à latere vides. </
s
>
<
s
id
="
s.010950
">Sed eas
<
lb
/>
niſi ea arte inuentas difficile eſt
<
lb
/>
deſcribere. </
s
>
</
p
>
<
figure
id
="
id.016.01.243.1.jpg
"
xlink:href
="
016/01/243/1.jpg
"
number
="
101
"/>
<
p
type
="
caption
">
<
s
id
="
s.010951
">
<
emph
type
="
italics
"/>
Lineæ nunquam concurrentes.
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
marg1532
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010952
">
<
margin.target
id
="
marg1532
"/>
Defectionis
<
lb
/>
priuilegia. </
s
>
<
s
id
="
s.010953
">2.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010954
">Defectionis duo ſunt priuilegia: primum
<
lb
/>
quòd proportio eius ad circuli ſuperficiem
<
lb
/>
eſt, velut rectanguli diametrorum defectio
<
lb
/>
nis ad rectangulum diametrorum circuli,
<
lb
/>
quod eſt quadratum. </
s
>
<
s
id
="
s.010955
">Secundum ex hoc du
<
lb
/>
cit originem, quòd proportio defectionis ad
<
lb
/>
defectionem eſt, velut rectangulorum ſub
<
lb
/>
diametris earum propriis contentorum. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010956
">Paraboles autem priuilegia ſex propria
<
lb
/>
ſunt. </
s
>
<
s
id
="
s.010957
">Primùm, ratio axis partium, in ea eſt,
<
arrow.to.target
n
="
marg1533
"/>
<
lb
/>
vt deductarum ex ipſis punctis perpendicu
<
lb
/>
larium ad paraboles circumferentiam dupli
<
lb
/>
cata. </
s
>
<
s
id
="
s.010958
">Secundum, cùm fuerit ipſa perpendi
<
lb
/>
cularis æqualis axis parti, quæ ad verticem
<
lb
/>
ab extremo eiuſdem perpendicularis termi
<
lb
/>
nabitur, vocabitur ipſa perpendicularis la
<
lb
/>
tus rectum Paraboles, erítque hæc ſemper
<
lb
/>
talem habens proportionem ex axe ad cir
<
lb
/>
cumferentiam, qualis eſt perpendicularis ip
<
lb
/>
ſius ad partem axis, quæ ipſam perpendicu
<
lb
/>
larem, & verticem ſectionis interiacet: vo
<
lb
/>
cantur verò hæ lineæ perpendiculares ordi
<
lb
/>
natæ. </
s
>
<
s
id
="
s.010959
">Manifeſtum eſt igitur, quòd cuilibet
<
lb
/>
parti axis Paraboles, ac ſuæ perpendiculari
<
lb
/>
ſemper eadem linea in continua proportio
<
lb
/>
ne ſubtenditur. </
s
>
<
s
id
="
s.010960
">Tertium, quòd ſi in ea pun
<
lb
/>
ctus præter axem ſignetur, ab hoc contin
<
lb
/>
gens ducatur, huic verò æquidiſtantes plu
<
lb
/>
rimæ à circumferentia ad circumferentiam
<
lb
/>
ducta ex eodem puncto contactus æquidi
<
lb
/>
ſtans axi, omnes lineas æquidiſtantes à
<
lb
/>
contingenti ductas per æqualia ſecabit. </
s
>
<
s
id
="
s.010961
">Por
<
lb
/>
tiones quoque quomodolibet ſumptæ, æqua
<
lb
/>
les habentes diametros, etiam æquales ſunt.
<
lb
/>
</
s
>
<
s
id
="
s.010962
">Ipſa verò ſuperficies æqualis eſt rectangu
<
lb
/>
lo ex tota baſi in duas è tribus axis partes.
<
lb
/>
</
s
>
<
s
id
="
s.010963
">Sextum, cùm tres contingentes periferiam
<
lb
/>
Paraboles concidunt, duas quidem extremas,
<
lb
/>
media ſecante, erit proportio partium trium
<
lb
/>
linearum vna, ſcilicet partis inferioris ad
<
lb
/>
ſuperiorem, & ſuperioris alterius ad infe
<
lb
/>
riorem, & mediæ illarum, quæ ad perife
<
lb
/>
riam Paraboles terminantur. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010964
">
<
margin.target
id
="
marg1533
"/>
Paraboles
<
lb
/>
priuilegia 6</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010965
">Spiralis autem lineæ priuilegia ſex etiam
<
lb
/>
ſunt. </
s
>
<
s
id
="
s.010966
">Primum quidem, quòd ducta contin
<
lb
/>
<
arrow.to.target
n
="
marg1534
"/>
<
lb
/>
gens ex fine illius occurrit perpendiculari ex
<
lb
/>
initio, ſemper tantum abſcindens ex contin
<
lb
/>
genti, vt proportionem habeat ad circuli ſub
<
lb
/>
eodem ordine periferiam, ſecundum ordinem
<
lb
/>
ſeriei numerorum. </
s
>
<
s
id
="
s.010967
">Vnde patet, quòd portio
<
lb
/>
primæ ſpiralis ex perpendiculari, erit æqua
<
lb
/>
lis periferiæ primi circuli, & portio perpen
<
lb
/>
dicularis ex ſecunda ſpirali dupla circuli ſe
<
lb
/>
cundi periferiæ, & portio ex tertia ſpirali
<
lb
/>
tripla circuli tertij periferiæ, atque ita dein
<
lb
/>
ceps. </
s
>
<
s
id
="
s.010968
">Secundum, ex quocunque puncto pri
<
lb
/>
mæ ſpiralis educta contingens, occurrit
<
lb
/>
perpendiculari ex initio eiuſdem dimetien
<
lb
/>
tis ductæ, tantam ex illa abſcindens par
<
lb
/>
tem, quanta eſt portio circumferentiæ cir
<
lb
/>
culi, cuius ſemidiameter eſt linea ex initio
<
lb
/>
lineæ ſpiralis, vſque ad punctum contin
<
lb
/>
gentis, clauſa inter primam lineam rectam
<
lb
/>
ſpiralis, quæ moueri intelligitur, & locum
<
lb
/>
ad quem per motum peruenerit ipſa ſpi
<
lb
/>
ralis è directo loci contingentis. </
s
>
<
s
id
="
s.010969
">Eſtque
<
lb
/>
tertium priuilegium, quòd ſpatia ſpira
<
lb
/>
lium ita ſe habent: primùm quidem vni
<
lb
/>
tatis, ſecundum ſenarij, tertium duodena
<
lb
/>
rij, quartum decemocto, atque ita deinceps
<
lb
/>
additione perpetua per ſenarium facta.
<
lb
/>
</
s
>
<
s
id
="
s.010970
">Quartum proportio cuiuſlibet circuli, ad </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>