Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
241
(221)
242
(222)
243
(223)
244
(224)
245
(225)
246
(226)
247
(227)
248
(228)
249
(229)
250
(230)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(224)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div550
"
type
="
section
"
level
="
1
"
n
="
328
">
<
pb
o
="
224
"
file
="
0244
"
n
="
244
"
rhead
="
GEOMETRIE
"/>
</
div
>
<
div
xml:id
="
echoid-div553
"
type
="
section
"
level
="
1
"
n
="
329
">
<
head
xml:id
="
echoid-head346
"
xml:space
="
preserve
">ALITER.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5466
"
xml:space
="
preserve
">OMnia quadrata, BF, ad rectangula ſub, BF, & </
s
>
<
s
xml:id
="
echoid-s5467
"
xml:space
="
preserve
">ſub portione,
<
lb
/>
BEG, ſunt vt, BF, ad portionem, BEG, rectangula verò
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0244-01
"
xlink:href
="
note-0244-01a
"
xml:space
="
preserve
">Coroll. 1.
<
lb
/>
26.lib.2.
<
lb
/>
per A.23.
<
lb
/>
lib. 2.</
note
>
ſub portione, BEG, & </
s
>
<
s
xml:id
="
echoid-s5468
"
xml:space
="
preserve
">parallelogrammo, BF, diuiduntur in re-
<
lb
/>
ctangula ſub, BEG, &</
s
>
<
s
xml:id
="
echoid-s5469
"
xml:space
="
preserve
">, BDE, trilineo .</
s
>
<
s
xml:id
="
echoid-s5470
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s5471
"
xml:space
="
preserve
">ſub trilineo, GEF, & </
s
>
<
s
xml:id
="
echoid-s5472
"
xml:space
="
preserve
">
<
lb
/>
ſub, BEG, & </
s
>
<
s
xml:id
="
echoid-s5473
"
xml:space
="
preserve
">trilineo, GEF, & </
s
>
<
s
xml:id
="
echoid-s5474
"
xml:space
="
preserve
">ſub, BEG, & </
s
>
<
s
xml:id
="
echoid-s5475
"
xml:space
="
preserve
">eadem portione,
<
lb
/>
BEG, .</
s
>
<
s
xml:id
="
echoid-s5476
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s5477
"
xml:space
="
preserve
">in omnia quadrata portionis, BEG, ergo omnia quadra-
<
lb
/>
ta, BF, ad omnia quadrata portionis, BEG, ſimul cum rectangu-
<
lb
/>
lis ſub portione, BEG, & </
s
>
<
s
xml:id
="
echoid-s5478
"
xml:space
="
preserve
">trilineo, GEF, bis ſumptis, vel omnia
<
lb
/>
quadrata, HF, ad omnia quadrata circuli, vel ellipſis, MBEG,
<
lb
/>
ſimul cum rectangulis ſub circulo, vel ellipſi, MBEG, & </
s
>
<
s
xml:id
="
echoid-s5479
"
xml:space
="
preserve
">trilineis,
<
lb
/>
MNG, GFE, bis ſumptis, erunt vt, BF, ad portionem, BEG,
<
lb
/>
vel vt, HF, ad circulum, vel ellipſim, MBEG, quod erat oſten,
<
lb
/>
dendum.</
s
>
<
s
xml:id
="
echoid-s5480
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div555
"
type
="
section
"
level
="
1
"
n
="
330
">
<
head
xml:id
="
echoid-head347
"
xml:space
="
preserve
">THEOREMA XV. PROPOS. XVI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5481
"
xml:space
="
preserve
">SI à parallelogrammo per lineam lateribus parallelam
<
lb
/>
parallelogrammum abſcindatur, quod intelligatur cir-
<
lb
/>
culo, vel ellipſi circumſcriptum, regula autem ſit parallelo-
<
lb
/>
grammi baſis : </
s
>
<
s
xml:id
="
echoid-s5482
"
xml:space
="
preserve
">Omnia quadrata circumſcripti parallelo-
<
lb
/>
grammi, ſimul cum rectangulis bis ſub eodem, & </
s
>
<
s
xml:id
="
echoid-s5483
"
xml:space
="
preserve
">ſub reli-
<
lb
/>
quo parallelogrammo per dictam parallelam conſtituto, ad
<
lb
/>
omnia quadrata dicti circuli, vel ellipſis, ſimul cum rectan-
<
lb
/>
gulis bis ſub eodem circulo, vel ellipſi, & </
s
>
<
s
xml:id
="
echoid-s5484
"
xml:space
="
preserve
">ſub quadrilineo
<
lb
/>
duabus parallelis circulum, vel ellipſim tangentibus, inclu-
<
lb
/>
ſaque ab ijſdem curua, & </
s
>
<
s
xml:id
="
echoid-s5485
"
xml:space
="
preserve
">latere totius parallelogrammi,
<
lb
/>
quod circulum, vel ellipſim non tangit, comprehenſo, erunt,
<
lb
/>
vt dictum circumſcriptum parallelogrammum ad eundem
<
lb
/>
circulum, velellipſim.</
s
>
<
s
xml:id
="
echoid-s5486
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5487
"
xml:space
="
preserve
">Sit ergo parallelogrammum, HO, cuius baſis, & </
s
>
<
s
xml:id
="
echoid-s5488
"
xml:space
="
preserve
">regula, DO,
<
lb
/>
ductaque, NF, intra ipſum lateribus, HD, CO, parallela, ſit ab-
<
lb
/>
ſciſſum à toto parallelogrammo, HO, parallelogrammum, HF, in-
<
lb
/>
telligatur autem circumſcriptum circulo, vel ellipſi, MBEG, cuics
<
lb
/>
centrum, A, per quod tranſeant diametri, ME, &</
s
>
<
s
xml:id
="
echoid-s5489
"
xml:space
="
preserve
">, BG, quæ ſit
<
lb
/>
producta vſque in, P, erunt autem dictæ diametri parallelæ paralle-
<
lb
/>
logrammi, HO, lateribus, tranſibuntque per puncta </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>