Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
241
242
243
244
245
246
247
248
249
250
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001610
">
<
pb
pagenum
="
206
"
xlink:href
="
028/01/246.jpg
"/>
oſtendendo videlicet, cùm CN foret duorum minu
<
lb
/>
torum, & CD illius dupla, ſimiliter minutorum
<
lb
/>
<
figure
id
="
id.028.01.246.1.jpg
"
xlink:href
="
028/01/246/1.jpg
"
number
="
48
"/>
<
lb
/>
duorum, atque ideò tota ND, minutorum qua
<
lb
/>
tuor: forè vt AN ex tuis principiis minutorum
<
lb
/>
quatuor, & eius tripla ND, tempore eodem
<
lb
/>
percurrerentur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001611
">
<
emph
type
="
italics
"/>
Sed cùm iis partibus omißis, rectè compares
<
emph.end
type
="
italics
"/>
XC
<
lb
/>
<
emph
type
="
italics
"/>
vltimum trientem ſupremæ partis
<
emph.end
type
="
italics
"/>
AC
<
emph
type
="
italics
"/>
cum tertia
<
lb
/>
parte
<
emph.end
type
="
italics
"/>
DE:
<
emph
type
="
italics
"/>
non rectè conſequenter hanc tertiam par
<
lb
/>
tem comparas cum tribus ſequentibus
<
emph.end
type
="
italics
"/>
EH,
<
emph
type
="
italics
"/>
quæ non
<
lb
/>
eodem tempore, aut æquali cum tertia parte
<
emph.end
type
="
italics
"/>
DE,
<
emph
type
="
italics
"/>
ſed
<
lb
/>
tempore longiore percurruntur. </
s
>
<
s
id
="
s.001612
">At rectiùs cum ea
<
lb
/>
dem tertia parte
<
emph.end
type
="
italics
"/>
DE
<
emph
type
="
italics
"/>
compararentur ſeptima, octa
<
lb
/>
ua, & nona, nempe
<
emph.end
type
="
italics
"/>
HL:
<
emph
type
="
italics
"/>
ſed talis progreßio per to
<
lb
/>
tum ſpatium decurrendum continua non eſt, vt vides:
<
lb
/>
interrupta enim primùm eſt inter
<
emph.end
type
="
italics
"/>
XC,
<
emph
type
="
italics
"/>
&
<
emph.end
type
="
italics
"/>
DE,
<
emph
type
="
italics
"/>
&
<
lb
/>
inde ab
<
emph.end
type
="
italics
"/>
E
<
emph
type
="
italics
"/>
ad
<
emph.end
type
="
italics
"/>
H:
<
emph
type
="
italics
"/>
& ſi vlteriùs procedendum eſſet, tum
<
lb
/>
à nona parte interrumperetur vſque ad decimam octa
<
lb
/>
uam, & ita deinceps: progreßio autem in ratione dupla
<
lb
/>
ſola per totum spatium continua eſt.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001613
">Id ſatis peruidi, ſed & ſimùl agnoui, quàm
<
lb
/>
operoſo ſimùl,
<
expan
abbr
="
irritõque
">irritonque</
expan
>
conamine mentem ad
<
lb
/>
iſta aduerteres; ea videlicet ſuperexſtruens la
<
lb
/>
baſcentibus ſponte fundamentis. </
s
>
<
s
id
="
s.001614
">Labaſcentibus,
<
lb
/>
inquam, primùm, quatenùs falſum eſt, velocitates eſſe
<
lb
/>
inter ſe ſicut ſpatia: quod tamen fuit tibi fundamen
<
lb
/>
tum primarium, ipſumque eodem Experimento, quo
<
lb
/>
id ſtabilieras, euerſum. </
s
>
<
s
id
="
s.001615
">Deinde quatenus nihil eſſe
<
lb
/>
videtur poſſe abſurdius, quàm primum primæ partis
<
lb
/>
dimidium nullo poſſe habere loco in progreſſione </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>