Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
241
241
242
242
243
243
244
244
245
245
246
246
247
247
248
248
249
249
250
250
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/248.jpg" pagenum="220"/>
                    <arrow.to.target n="note196"/>
                  </s>
                </p>
              </subchap2>
              <subchap2>
                <p type="margin">
                  <s>
                    <margin.target id="note196"/>
                  DE MOTU
                    <lb/>
                  CORPORUM</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  SECTIO II.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                    <emph type="italics"/>
                  De motu Corporum quibus reſiſtitur in duplicata ra­
                    <lb/>
                  tione Velocitatum.
                    <emph.end type="italics"/>
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  PROPOSITIO V. THEOREMA III.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Si Corpori reſiſiitur in velocitatis ratione duplicata, & idem ſola
                    <lb/>
                  vi inſita per Medium ſimilare movetur; tempora vero ſuman­
                    <lb/>
                  tur in progreſſione Geometrica a minoribus terminis ad majores
                    <lb/>
                  pergente: dico quod velocitates initio ſingulorum temporum
                    <lb/>
                  ſunt in eadem progreſſione Geometrica inverſe, & quod ſpatia
                    <lb/>
                  ſunt æqualia quæ ſingulis temporibus deſcribuntur.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>Nam quoniam quadrato velocita­
                    <lb/>
                    <figure id="id.039.01.248.1.jpg" xlink:href="039/01/248/1.jpg" number="149"/>
                    <lb/>
                  tis proportionalis eſt reſiſtentia Me­
                    <lb/>
                  dii, & reſiſtentiæ proportionale eſt
                    <lb/>
                  decrementum velocitatis; ſi tempus
                    <lb/>
                  in particulas innumeras æquales divi­
                    <lb/>
                  datur, quadrata velocitatum ſingulis
                    <lb/>
                  temporum initiis erunt velocitatum
                    <lb/>
                  earundem differentiis proportionalia. </s>
                  <s>
                    <lb/>
                  Sunto temporis particulæ illæ
                    <emph type="italics"/>
                  AK,
                    <lb/>
                  KL, LM,
                    <emph.end type="italics"/>
                  &c. </s>
                  <s>in recta
                    <emph type="italics"/>
                  CD
                    <emph.end type="italics"/>
                  ſumptæ,
                    <lb/>
                  & erigantur perpendicula
                    <emph type="italics"/>
                  AB, Kk,
                    <lb/>
                  Ll, Mm,
                    <emph.end type="italics"/>
                  &c. </s>
                  <s>Hyperbolæ
                    <emph type="italics"/>
                  BklmG,
                    <emph.end type="italics"/>
                    <lb/>
                  centro
                    <emph type="italics"/>
                  C
                    <emph.end type="italics"/>
                  Aſymptotis rectangulis
                    <emph type="italics"/>
                  CD, CH
                    <emph.end type="italics"/>
                  deſcriptæ, occurrentia
                    <lb/>
                  in
                    <emph type="italics"/>
                  B, k, t, m,
                    <emph.end type="italics"/>
                  &c. </s>
                  <s>& erit
                    <emph type="italics"/>
                  AB
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  Kk
                    <emph.end type="italics"/>
                  ut
                    <emph type="italics"/>
                  CK
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  CA,
                    <emph.end type="italics"/>
                  & diviſim
                    <lb/>
                    <emph type="italics"/>
                  AB-Kk
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  Kk
                    <emph.end type="italics"/>
                  ut
                    <emph type="italics"/>
                  AK
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  CA,
                    <emph.end type="italics"/>
                  & viciſſim
                    <emph type="italics"/>
                  AB-Kk
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  AK
                    <emph.end type="italics"/>
                    <lb/>
                  ut
                    <emph type="italics"/>
                  Kk
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  CA,
                    <emph.end type="italics"/>
                  adeoque ut
                    <emph type="italics"/>
                  ABXKk
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  ABXCA.
                    <emph.end type="italics"/>
                  Unde, cum
                    <lb/>
                    <emph type="italics"/>
                  AK
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  ABXCA
                    <emph.end type="italics"/>
                  dentur, erit
                    <emph type="italics"/>
                  AB-Kk
                    <emph.end type="italics"/>
                  ut
                    <emph type="italics"/>
                  ABXKk
                    <emph.end type="italics"/>
                  ; & ultimo,
                    <lb/>
                  ubi coeunt
                    <emph type="italics"/>
                  AB
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  Kk,
                    <emph.end type="italics"/>
                  ut
                    <emph type="italics"/>
                    <expan abbr="ABq.">ABque</expan>
                    <emph.end type="italics"/>
                  Et ſimili argumento erunt
                    <emph type="italics"/>
                  Kk-Ll,
                    <lb/>
                  Ll-Mm,
                    <emph.end type="italics"/>
                  &c. </s>
                  <s>ut
                    <emph type="italics"/>
                  Kkq, Llq,
                    <emph.end type="italics"/>
                  &c. </s>
                  <s>Linearum igitur
                    <emph type="italics"/>
                  AB, Kk, Ll, Mm
                    <emph.end type="italics"/>
                  </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>