Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
241
242
243
244
245
246
247
248
249
250
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/248.jpg
"
pagenum
="
220
"/>
<
arrow.to.target
n
="
note196
"/>
</
s
>
</
p
>
</
subchap2
>
<
subchap2
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note196
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
SECTIO II.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
De motu Corporum quibus reſiſtitur in duplicata ra
<
lb
/>
tione Velocitatum.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO V. THEOREMA III.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Corpori reſiſiitur in velocitatis ratione duplicata, & idem ſola
<
lb
/>
vi inſita per Medium ſimilare movetur; tempora vero ſuman
<
lb
/>
tur in progreſſione Geometrica a minoribus terminis ad majores
<
lb
/>
pergente: dico quod velocitates initio ſingulorum temporum
<
lb
/>
ſunt in eadem progreſſione Geometrica inverſe, & quod ſpatia
<
lb
/>
ſunt æqualia quæ ſingulis temporibus deſcribuntur.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam quoniam quadrato velocita
<
lb
/>
<
figure
id
="
id.039.01.248.1.jpg
"
xlink:href
="
039/01/248/1.jpg
"
number
="
149
"/>
<
lb
/>
tis proportionalis eſt reſiſtentia Me
<
lb
/>
dii, & reſiſtentiæ proportionale eſt
<
lb
/>
decrementum velocitatis; ſi tempus
<
lb
/>
in particulas innumeras æquales divi
<
lb
/>
datur, quadrata velocitatum ſingulis
<
lb
/>
temporum initiis erunt velocitatum
<
lb
/>
earundem differentiis proportionalia. </
s
>
<
s
>
<
lb
/>
Sunto temporis particulæ illæ
<
emph
type
="
italics
"/>
AK,
<
lb
/>
KL, LM,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>in recta
<
emph
type
="
italics
"/>
CD
<
emph.end
type
="
italics
"/>
ſumptæ,
<
lb
/>
& erigantur perpendicula
<
emph
type
="
italics
"/>
AB, Kk,
<
lb
/>
Ll, Mm,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>Hyperbolæ
<
emph
type
="
italics
"/>
BklmG,
<
emph.end
type
="
italics
"/>
<
lb
/>
centro
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
Aſymptotis rectangulis
<
emph
type
="
italics
"/>
CD, CH
<
emph.end
type
="
italics
"/>
deſcriptæ, occurrentia
<
lb
/>
in
<
emph
type
="
italics
"/>
B, k, t, m,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>& erit
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Kk
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
CK
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
CA,
<
emph.end
type
="
italics
"/>
& diviſim
<
lb
/>
<
emph
type
="
italics
"/>
AB-Kk
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Kk
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
CA,
<
emph.end
type
="
italics
"/>
& viciſſim
<
emph
type
="
italics
"/>
AB-Kk
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
<
lb
/>
ut
<
emph
type
="
italics
"/>
Kk
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
CA,
<
emph.end
type
="
italics
"/>
adeoque ut
<
emph
type
="
italics
"/>
ABXKk
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
ABXCA.
<
emph.end
type
="
italics
"/>
Unde, cum
<
lb
/>
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
ABXCA
<
emph.end
type
="
italics
"/>
dentur, erit
<
emph
type
="
italics
"/>
AB-Kk
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
ABXKk
<
emph.end
type
="
italics
"/>
; & ultimo,
<
lb
/>
ubi coeunt
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Kk,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
<
expan
abbr
="
ABq.
">ABque</
expan
>
<
emph.end
type
="
italics
"/>
Et ſimili argumento erunt
<
emph
type
="
italics
"/>
Kk-Ll,
<
lb
/>
Ll-Mm,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>ut
<
emph
type
="
italics
"/>
Kkq, Llq,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>Linearum igitur
<
emph
type
="
italics
"/>
AB, Kk, Ll, Mm
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>