Cardano, Girolamo, De subtilitate, 1663

List of thumbnails

< >
241
241
242
242
243
243
244
244
245
245
246
246
247
247
248
248
249
249
250
250
< >
page |< < of 403 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.011092">
                <pb pagenum="601" xlink:href="016/01/248.jpg"/>
              minor ſit toto, erit angulus
                <expan abbr="contactuũ">contactuum</expan>
              quan­
                <lb/>
              tumcunque magnus minor angulo rectili­
                <lb/>
              neo quantumcunque paruo: quod erat de­
                <lb/>
              monſtrandum. </s>
              <s id="s.011093">Igitur primi argumenti diſ­
                <lb/>
              ſolutio eſſe videtur, quòd angulus ille non
                <lb/>
              æqualiter augetur eo motu linea CB, ſed vt
                <lb/>
              magis proximus fit ipſi A, eò maius fit ar­
                <lb/>
              gumentum, ideò ſtatim tranſit ab acuto in
                <lb/>
              obtuſum abſque recto. </s>
              <s id="s.011094">Demonſtratio huius
                <lb/>
              eſt, quòd in proceſſu primæ medietatis ſe­
                <lb/>
              micirculi à C vſque ad M. ſolùm acquiritur
                <lb/>
              angulus C M L, & in proceſſu alterius
                <lb/>
              medietatis ſemicirculi acquiritur angulus
                <lb/>
              CMA, ab M vſque ad A, ſed angulus CMA
                <lb/>
              eſt maior angulo C ML in angulo CM A
                <lb/>
              à rectis contento, qui eſt dimidium recti:
                <lb/>
              igitur multò magis augetur angulus recta &
                <lb/>
              circumferentia contentus in medietate ſemi­
                <lb/>
              circuli MA, quam CM. </s>
              <s id="s.011095">Eadem ratione de
                <lb/>
              partibus circumferentiæ M A inuicem col­
                <lb/>
              latis. </s>
              <s id="s.011096">Igitur incrementum anguli CEK, ſu­
                <lb/>
              per CKB maius eſt incremento CKB ſuper
                <lb/>
              CBL: & incrementum CAE ſuper CEK,
                <lb/>
              maius eſt incremento CEK ſuper CKB: igi­
                <lb/>
              tur etiam quòd linea tranſiret per omnia
                <lb/>
              media ex B in K, non tamen ex K in E, &
                <lb/>
              multò minùs ex E in A, ideóque nec ex A
                <lb/>
              in G Apparet igitur primi paralogiſmi diſ­
                <lb/>
              ſolutio. </s>
              <s id="s.011097">Sed ſecundus non eadem ratio­
                <lb/>
              ne diſſoluitur, verùm multi ſunt modi de­
                <lb/>
              monſtrationum, & longè plures aſſumptio­
                <lb/>
              num. </s>
              <s id="s.011098">In multis enim profuit ſcire, quòd ita
                <lb/>
              eſſet, vt in ſolidi cubi numeri generatio­
                <lb/>
              ne paulò pòſt demonſtrauimus. </s>
              <s id="s.011099">Et quod ma­
                <lb/>
              ximum productum ex parte cuiuſlibet quan­
                <lb/>
              titatis in reſidui quadratum eſt, cum tertia
                <lb/>
              pars quantitatis in reſidui quadratum duci­
                <lb/>
              tur: hoc enim in Geometricorum elemen­
                <lb/>
              torum duodecimo libro demonſtratur à no­
                <lb/>
              bis. </s>
              <s id="s.011100">Verùm id antiqui latêre voluerunt, vt
                <lb/>
              magis admiratione digni viderentur. </s>
              <s id="s.011101">Quæ
                <lb/>
              enim nobis non parùm profuere, etiam illis
                <lb/>
              præſidio fuerunt: quandoquidem nos in plu­
                <lb/>
              ribus principia cum tota arte inuenerimus.
                <lb/>
              </s>
              <s id="s.011102">Quod etiam feciſſe Apollonium, & Archi­
                <lb/>
              medem arbitror, non tamen Euclidem, ne­
                <lb/>
              que Philoſophorum quenquam aliorum:
                <lb/>
              nam demonſtratis, ab aliis adiuti ſunt. </s>
              <s id="s.011103">Ve­
                <lb/>
              luti penultimam primi elementorum refe­
                <lb/>
              runt inuentum eſſe Pythagoræ Samij, ob
                <lb/>
              cuius inuentionem lætatum adeò tradunt,
                <lb/>
              vt bouem immolauerit: quod tamen vix cre­
                <lb/>
              di poteſt, quandoquidem ac omni cæde ani­
                <lb/>
              malium abſtinuerit Pythagoras. </s>
              <s id="s.011104">Sed certum
                <lb/>
              eſt, ex demonſtratione Architæ Tarentini
                <lb/>
              illius diſcipuli de inuentione duarum linea­
                <lb/>
              rum inter alias duas continua proportione
                <lb/>
              iunctarum, ante tempora Euclidis Megaren­
                <lb/>
              ſis geometrica inuenta, & præſtantiſſima
                <lb/>
              floruiſſe. </s>
              <s id="s.011105">Neque tamen parum fuit, Eucli­
                <lb/>
              dem in eum ordinem adeò exquiſitum cun­
                <lb/>
              cta redegiſſe, & quæ defecerant adieciſſe. </s>
            </p>
            <p type="margin">
              <s id="s.011106">
                <margin.target id="marg1552"/>
              Reſolutoriæ
                <lb/>
              methodi
                <lb/>
              exemplum.</s>
            </p>
            <p type="margin">
              <s id="s.011107">
                <margin.target id="marg1553"/>
              Duæ quan­
                <lb/>
              titates
                <expan abbr="parũ">parum</expan>
                <lb/>
              magnitudi­
                <lb/>
              ne differen­
                <lb/>
              tes, quarum
                <lb/>
              maiore ſem­
                <lb/>
              per per me­
                <lb/>
              dium diuiſa,
                <lb/>
              & minore
                <lb/>
              ſemper du­
                <lb/>
              plicata, mi­
                <lb/>
              nor
                <expan abbr="nunquã">nunquam</expan>
                <lb/>
              maiorem ex­
                <lb/>
              cedere poteſt
                <lb/>
              aut æquare.</s>
            </p>
            <p type="main">
              <s id="s.011108">Sed vbi finis non adeò certus eſt, diffici­
                <lb/>
              lior profectò eſt inuenio. </s>
              <s id="s.011109">Quorundam qui­
                <lb/>
              dem difficillima prorſus, veluti, quæ maxi­
                <lb/>
              ma poſſit eſſe proportio dupli tertiæ quan­
                <lb/>
              titatis ad aggregatum primæ & quartæ con­
                <lb/>
              tinuæ proportionis. </s>
              <s id="s.011110">Nam ea conſtant in mi­
                <lb/>
              nore proportione ſeſquiquarta, & maiore
                <lb/>
              ſeſquiquinta. </s>
              <s id="s.011111">Si enim capiamus 64. & 80.
                <lb/>
              & 100. & 125. duplum tertiæ quantitatis eſt
                <lb/>
              200. aggregatum primæ, & quartæ 189. Pro­
                <lb/>
              portio autem 369/341 minor eſt 299/189. Eſt au­
                <lb/>
              tem 360 duplum tertiæ quantitatis, & 341.
                <lb/>
              eſt aggregatum primæ & quartæ in propor­
                <lb/>
              tione ſeſquiquinta, vt ſint quantitates ipſæ
                <lb/>
              125. 150. 180. 216. Hoc autem demonſtra­
                <lb/>
              ri poteſt, ducto 360. in 189. fit 68. M 40.
                <lb/>
              Eſt autem hoc minùs, quàm 68. M. 200.
                <lb/>
              In talibus igitur inuenire demonſtratione,
                <lb/>
              difficillimum eſt: quantò magis vbi duarum
                <lb/>
              quantitatum diuerſorum generum, quæ ad
                <lb/>
              æqualitatem nullam perueniunt, in genere
                <lb/>
              perfecto fit comparatio. </s>
              <s id="s.011112">Nam paraboles ad
                <lb/>
              trigonum interiorem exquiſita eſt ratio epi­
                <lb/>
              trita, vt ab Archimede demonſtratur, quod
                <lb/>
              in quinto priuilegio à nobis expoſito ſupe­
                <lb/>
              rius continetur. </s>
              <s id="s.011113">Hoc igitur principium fuit,
                <lb/>
              quo Archimedes proportionem, & menſu­
                <lb/>
              ram parabolis potuerit inuenire. </s>
              <s id="s.011114">Liquet ex
                <lb/>
              illius demonſtratione, quòd ſi proportio hæc
                <lb/>
              in abſurdam aliquam, & quæ nullo modo
                <lb/>
              numeris deſcribi poſſet quantitatem incidiſ­
                <lb/>
              ſet, Archimedem illam non potuiſſe demon­
                <lb/>
              ſtrare. </s>
              <s id="s.011115">Ita & ratio ſphæræ ad conum dupla
                <lb/>
              apud illum: & rurſus apud Euclidem cylin­
                <lb/>
              dri ad conum tripla exquiſita. </s>
              <s id="s.011116">Quibus inuen­
                <lb/>
              tis, facilè fuit etiam partium rationem inui­
                <lb/>
              cem declaraſſe. </s>
              <s id="s.011117">Nam quæ inuicem non iun­
                <lb/>
              guntur rationali proportione, medio dua­
                <lb/>
              rum proportionem innoteſcere
                <expan abbr="conſueuerũt">conſueuerunt</expan>
              . </s>
            </p>
            <p type="main">
              <s id="s.011118">Quamobrem quadratum circulo æquale
                <lb/>
              impoſſibile eſt inuenire: & qui conati ſunt,
                <lb/>
              non videntur demonſtrationes Archimedis,
                <lb/>
              aut Apollinij, aut Euclidis intellexiſſe: aut ſi
                <lb/>
              modò intellexerunt, non animaduerterunt.
                <lb/>
              </s>
              <s id="s.011119">Nam principium omne inuentionis à com­
                <lb/>
              poſitione fit, compoſitionem ſequitur reſo­
                <lb/>
              lutio. </s>
              <s id="s.011120">At in compoſitione notus neceſſariò
                <lb/>
              eſt finis, ob id igitur in genere diuerſarum
                <lb/>
              quantitatum finem, & rationem notam eſſe
                <lb/>
              illarum oportet. </s>
              <s id="s.011121">At in circuli magnitudine,
                <lb/>
              ſeu ſuperficies ac quadrati ſuperficiem refe­
                <lb/>
              ratur, ſeu periferia ad diametrum, nulla per
                <lb/>
              ſe nota proportio eſt: demonſtratum enim
                <lb/>
              eſt ab Archimede, rationem periferiæ ad
                <lb/>
              diametrum minorem eſſe, quàm 22. ad 7.
                <lb/>
              maiorem verò tripla, & 10/71. Atque id eſt di­
                <lb/>
              cere minorem tripla, & 19/70 maiorem tri­
                <lb/>
              pla, 10/71 ſeu inter proportionem 15/4 62/97 &
                <lb/>
              15/4 61/97. Sed neque in ſuperficiebus: nam po­
                <lb/>
              ſita diametro 7. erit quadratum interius
                <lb/>
              circuli 24. 1/22. Sed area circuli vt ab Archi­
                <lb/>
              mede, & nobis demonſtratum eſt, fit ex di­
                <lb/>
              midio diametri in dimidium periferiæ, qua­
                <lb/>
              re erit 308. 1/2. Igitur proportio qualis 77.
                <lb/>
              ad 49. quare vt 11. ad 7. Verùm vt dictum
                <lb/>
              eſt periferia eſt minor 22. quantitate non
                <lb/>
              ſenſili, nec rationali: quadratum autem inte­
                <lb/>
              rius non mutatur, igitur proportio circuli ad
                <lb/>
              quadratum interius inſcriptum eſt minor
                <lb/>
              aliquantò, quàm 11. ad 7. igitur abſurda, &
                <lb/>
              incognita. </s>
              <s id="s.011122">Conati autem ſunt antiquorum
                <lb/>
              plurimi, & alij noſtro tempore, quorum vix
                <lb/>
              eſt numerum, & nomina referre, verùm res
                <lb/>
              quæ poſſibilis non eſt, claritatem ingenij il­
                <lb/>
              lorum hebetiorem videri fecit. </s>
              <s id="s.011123">Sed ortum
                <lb/>
              hic conatus irritus habuit ex verbis Ariſto­
                <lb/>
              telis malè interpretantis. </s>
              <s id="s.011124">Exempli loco enim </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>