Cardano, Girolamo
,
De subtilitate
,
1663
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
241
242
243
244
245
246
247
248
249
250
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
page
|<
<
of 403
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.011124
">
<
pb
pagenum
="
602
"
xlink:href
="
016/01/249.jpg
"/>
dixit, circuli quadraturam, cùm quę ſciri poſ
<
lb
/>
ſunt, & nondum ſcita ſunt, refert: & ſi ſcita
<
lb
/>
non ſit, non obſtarem, quin ſciri non poſſit.
<
lb
/>
</
s
>
<
s
id
="
s.011125
">Non tamen dixit ſciri poſſe. </
s
>
<
s
id
="
s.011126
">Dupliciter au
<
lb
/>
tem ſciri contingit illam: aut obſcuriore mo
<
lb
/>
do, quàm cùm ignota eſt: velut per elicas li
<
lb
/>
neas, quibus vtitur Archimedes, & æqualem
<
lb
/>
rectam circuli periferiæ deſcribit: aut per
<
lb
/>
tranſlationem, quam nemo adhuc tentare
<
lb
/>
auſus eſt, partim ob difficultatem, partim ob
<
lb
/>
demonſtrandi modum ignotum
<
emph
type
="
italics
"/>
:
<
emph.end
type
="
italics
"/>
alij quòd
<
lb
/>
confiſi ſint faciliori modo eam inuenire
<
lb
/>
poſſe: aliis quod ſcripta antiquorum huic
<
lb
/>
generi demonſtrationis neceſſaria deeſſent,
<
lb
/>
intacta fuit. </
s
>
<
s
id
="
s.011127
">Verùm cùm ad certam
<
expan
abbr
="
notionẽ
">notionem</
expan
>
<
lb
/>
non deueniat abſque demonſtrationis auxi
<
lb
/>
lio, non licet illam percipere ante
<
expan
abbr
="
demõſtra-tionem
">demonſtra
<
lb
/>
tionem</
expan
>
, vt in quibuſdam arithmeticis quæ
<
lb
/>
ſtionibus caſu quandoque contigit. </
s
>
<
s
id
="
s.011128
">Sed de
<
lb
/>
his hactenus, quæ ad demonſtrandi modos
<
lb
/>
pertinent, in quibus maximè artis Geome
<
lb
/>
tricæ ſubtilitatem edocuimus. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.011129
">Hanc proximè Arithmetica ſequitur, cu
<
lb
/>
ius ſubtiliſſimum inuentum eſt ars,
<
expan
abbr
="
quã
">quam</
expan
>
nos
<
lb
/>
<
arrow.to.target
n
="
marg1554
"/>
<
lb
/>
Magnam vocauimus, à nobis inuenta, editá
<
lb
/>
que, Algebraticam alij dixerunt, cuius eſt
<
lb
/>
multiplex vtilitas, Ingenium acuere, latera
<
lb
/>
quantitatum incognita inuenire, & explica
<
lb
/>
re: eadémque lineis iuxta geometrica inſti
<
lb
/>
tuta, vel planis aut ſolidis deſcribere: propo
<
lb
/>
ſita ſoluere problemata,
<
expan
abbr
="
ænigmatáq;
">ænigmatáque</
expan
>
& malè
<
lb
/>
ſoluta poſſe refellere, vt lateris heptagoni
<
lb
/>
magnitudinem à Bouillo
<
lb
/>
perperam, quæſitam, &
<
lb
/>
<
expan
abbr
="
æqualitatẽ
">æqualitatem</
expan
>
rectæ cum pe
<
lb
/>
riferia circuli ex
<
expan
abbr
="
libramẽ-to
">libramen
<
lb
/>
to</
expan
>
à Nicolao Cuſa confi
<
lb
/>
ctam, exploſam verò iure
<
lb
/>
<
figure
id
="
id.016.01.249.1.jpg
"
xlink:href
="
016/01/249/1.jpg
"
number
="
108
"/>
<
lb
/>
à Ioanne Monteregio. </
s
>
<
s
id
="
s.011130
">Conſtant omnia ſim
<
lb
/>
<
arrow.to.target
n
="
marg1555
"/>
<
lb
/>
pliciſſima figura, quæ lineas, areas, & cor
<
lb
/>
pora etiam oſtendit: ſed & poſt quartam ſe
<
lb
/>
cundi Element. </
s
>
<
s
id
="
s.011131
">Euclidis, ſex proximas ſe
<
lb
/>
quentes. </
s
>
<
s
id
="
s.011132
">Eſt verò & aliud ſolidi numeri cu
<
lb
/>
bi compoſitionis genus Arithmeticæ pro
<
lb
/>
prium, in quo genus reſolutionis, quod à
<
lb
/>
compoſitione ortum habet, fit manifeſtum.
<
lb
/>
</
s
>
<
s
id
="
s.011133
">Omnis enim cubus numerus componitur
<
lb
/>
ex quadrato ſui lateris, & duplo producti
<
lb
/>
ex latere in omnes antecedentes numeros
<
lb
/>
vſque ad vnitatem: velut capio 512. cu
<
lb
/>
ius latus eſt 8. dico igitur, quòd 8. ductum
<
lb
/>
in ſe, & fit 64: & in duplum anteceden
<
lb
/>
tium numerorum, qui ſunt 1. 2. 3. 4. 5. 6.
<
lb
/>
& 7 ab vnitate
<
emph
type
="
italics
"/>
(
<
emph.end
type
="
italics
"/>
vt vides ) incipiendo, &
<
lb
/>
eſt duplum horum 56. & productum ex 8.
<
lb
/>
in 56. eſt 448. faciunt ipſum cubum, id
<
lb
/>
eſt, 411. nam 448. & 64. faciunt iuncti 512.
<
lb
/>
Ab initio autem videbatur hoc non poſſe
<
lb
/>
demonſtrari, ſed via reſolutionis demonſtra
<
lb
/>
uimus. </
s
>
<
s
id
="
s.011134
">Cùm enim quilibet numerus cubus
<
lb
/>
fiat ex quadrato lateris in latus ſuum, fiet
<
lb
/>
etiam ex quadrato lateris in vnitatem, &
<
lb
/>
eodem quadrato in latus vnitate dempta, ex
<
lb
/>
ſecundi Element. </
s
>
<
s
id
="
s.011135
">Euclidis primo theore
<
lb
/>
mate. </
s
>
<
s
id
="
s.011136
">At productum quadrati in vnitatem
<
lb
/>
ſemper eſt æquale quadrato, ex demon
<
lb
/>
ſtratis à nobis in principio ſexti operis perfe
<
lb
/>
cti, idque etiam ſenſu ipſo percipitur pro
<
lb
/>
ductum autem quadrati in latus, dempta
<
lb
/>
vnitate æquale producto lateris in duplum
<
lb
/>
aggregati omnium præcedentium numero
<
lb
/>
rum: itaque hoc demonſtrato patet propo
<
lb
/>
ſitum. </
s
>
<
s
id
="
s.011137
">Hoc autem rurſus reſolutione indi
<
lb
/>
get: qualis enim proportio quadrati ad du
<
lb
/>
plum illius aggregati, talis lateris ad ſeip
<
lb
/>
ſum dempta vnitate. </
s
>
<
s
id
="
s.011138
">Igitur ex demonſtra
<
lb
/>
tis ab Euclide in ſexto Elementorum, tan
<
lb
/>
tùm fit ex latere in duplum illius aggregati
<
lb
/>
quantum ex quadrato in latus dempta vni
<
lb
/>
tate. </
s
>
<
s
id
="
s.011139
">Oportet igitur rurſus illam propor
<
lb
/>
tionem oſtendere, atque hæc eſt demon
<
lb
/>
ſtratio: quia duplum illius aggregati ſem
<
lb
/>
per eſt æquale producto maximi numeri in
<
lb
/>
maiorem vnitate, velut duplum aggregati
<
lb
/>
numerorum vſque ad 7. eſt 56. & hic fit
<
lb
/>
ex 7. maximo numero in 8. qui maximum
<
lb
/>
numerum vnitate excedit. </
s
>
<
s
id
="
s.011140
">Igitur cùm ex la
<
lb
/>
tere in ſe ducto fiat quadratum ipſius lateris
<
lb
/>
& ex latere in ſeipſum detracta vnitate fiat
<
lb
/>
illud duplum, erit ex demonſtratis ab Eucli
<
lb
/>
de proportio quadrati lateris ad duplum il
<
lb
/>
lud qualis literis ad ſeipſum detracta vnita
<
lb
/>
te, quod aſſumpſimus, demonſtrandum. </
s
>
<
s
id
="
s.011141
">Eſ
<
lb
/>
ſet igitur iam hoc perfectè oſtenſum, niſi
<
lb
/>
quod nondum conſtat, quòd ex quolibet nu
<
lb
/>
mero in vnitate minorem, fiat duplum ag
<
lb
/>
gregati omnium antecedentium numero
<
lb
/>
rum. </
s
>
<
s
id
="
s.011142
">Hoc verò ſic demonſtratur. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.011143
">
<
margin.target
id
="
marg1554
"/>
Artis ma
<
lb
/>
gnæ quintu
<
lb
/>
plex vſus.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.011144
">
<
margin.target
id
="
marg1555
"/>
Cubi numeri
<
lb
/>
pulchra
<
lb
/>
compoſitio,
<
lb
/>
& exem
<
lb
/>
plum aliud
<
lb
/>
reſolutoriæ
<
lb
/>
methodi.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.011145
">Quilibet autem duo numeri, æqualiter
<
lb
/>
à medio diſtantes iuncti, duplum medij nu
<
lb
/>
meri efficiunt, igitur omnes numeri ab vni
<
lb
/>
tate iuncti ſeriatim, tantum efficiunt, quan
<
lb
/>
tum ſi medius numerus pro numero illorum
<
lb
/>
terminorum aſſumeretur. </
s
>
<
s
id
="
s.011146
">Sed maximus nu
<
lb
/>
merus continet ad vnguem ordinem illo
<
lb
/>
rum, igitur omnes numeri ſeriatim ab vni
<
lb
/>
tate ſumpti: tantum iuncti faciunt, quan
<
lb
/>
tum medius illorum productus in maiorem.
<
lb
/>
</
s
>
<
s
id
="
s.011147
">Igitur duplum aggregati talium numero
<
lb
/>
rum, eſt æquale duplo producti medij in
<
lb
/>
maximum illorum. </
s
>
<
s
id
="
s.011148
">Sed numerus maximo
<
lb
/>
vnitate maior, duplus eſt medio, igitur ex
<
lb
/>
numero maximo in vnitate maiorem du
<
lb
/>
plum fit aggregari omnium numerorum ab
<
lb
/>
vnitate ad maximum numerum. </
s
>
<
s
id
="
s.011149
">Eſt & me
<
lb
/>
dius quidam compoſitionis modus. </
s
>
<
s
id
="
s.011150
">Sed in
<
lb
/>
iam declarato, licet per compoſitionem re
<
lb
/>
ſoluta colligere, atque ſic demonſtrationem
<
lb
/>
theorematis afferre. </
s
>
<
s
id
="
s.011151
">Laudabimus & quæ
<
lb
/>
dam ſingularia inuenta, vt Michaëlis Sti
<
lb
/>
phelij laterum inuentionem, tranſlatam à
<
lb
/>
<
arrow.to.target
n
="
marg1556
"/>
<
lb
/>
nobis in primum Operis perfecti librum. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.011152
">
<
margin.target
id
="
marg1556
"/>
Michaëlis
<
lb
/>
Stiphelij in
<
lb
/>
uentum in
<
lb
/>
Arithmeti
<
lb
/>
ca.
<
lb
/>
</
s
>
<
s
id
="
s.011153
">Muſica ſub
<
lb
/>
tilitatis in
<
lb
/>
uentum.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.011154
">Succedunt his muſica inuenta, triplicis
<
lb
/>
olim ordinis diateſſaron, è quibus ſolùm
<
expan
abbr
="
vnũ
">vnum</
expan
>
<
lb
/>
nunc diatonicum cognitum eſt, reliquos or
<
lb
/>
dines ſeu incuria, ſeu difficultate amiſimus.
<
lb
/>
</
s
>
<
s
id
="
s.011155
">Nunc verò breuiſſimè illorum reſtitutionem
<
lb
/>
per nos factam atque in primo, & ſecundo
<
lb
/>
muſicæ tractatam doceamus. </
s
>
<
s
id
="
s.011156
">Chromaticum
<
lb
/>
fit per fictam muſicam, vbi non ſolùm in b
<
lb
/>
<
arrow.to.target
n
="
marg1557
"/>
<
lb
/>
f a b mi, ſed & e la mi, & a la mi re hemi
<
lb
/>
tonium inducitur, vt in cheli propriè, ſed &
<
lb
/>
organa eius rationis muſicæ ſunt capacia.
<
lb
/>
</
s
>
<
s
id
="
s.011157
">Dulciſſimus videtur hic modus diatonici ge
<
lb
/>
neris comparatione, ob frequentia hemito
<
lb
/>
nia: parua enim interualla, & notæ propor
<
lb
/>
tiones, vocum ſuauitatem afferunt. </
s
>
<
s
id
="
s.011158
">Innititur
<
lb
/>
autem Chromaticum genus hemitonio, to-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>