Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
241
242
243
244
245
246
247
248
249
250
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/250.jpg
"
pagenum
="
222
"/>
<
arrow.to.target
n
="
note198
"/>
de datur punctum
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
per quod Hyperbola, Aſymptoris
<
emph
type
="
italics
"/>
CH, CD,
<
emph.end
type
="
italics
"/>
<
lb
/>
deſcribi debet; ut & ſpatium
<
emph
type
="
italics
"/>
ABGD,
<
emph.end
type
="
italics
"/>
quod corpus incipiendo
<
lb
/>
motum ſuum cum velocitate illa
<
emph
type
="
italics
"/>
AB,
<
emph.end
type
="
italics
"/>
tempore quovis
<
emph
type
="
italics
"/>
AD,
<
emph.end
type
="
italics
"/>
in Me
<
lb
/>
dio ſimilari reſiſtente deſcribere poteſt. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note198
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO VI. THEOREMA IV.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corpora Spherica homogemea & æqualia, reſiſtentiis in duplicata
<
lb
/>
ratione velocitatum impedita, & ſolis viribus inſitis incitata,
<
lb
/>
temporibus quæ ſunt reciproce ut velocitates ſub initio, deſcri
<
lb
/>
bunt ſemper æqualia ſpatia, & amittunt partes velocitatum pro
<
lb
/>
portionales totis.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Aſymptotis rectangulis
<
emph
type
="
italics
"/>
CD,
<
lb
/>
<
figure
id
="
id.039.01.250.1.jpg
"
xlink:href
="
039/01/250/1.jpg
"
number
="
150
"/>
<
lb
/>
CH
<
emph.end
type
="
italics
"/>
deſcripta Hyperbola qua
<
lb
/>
vis
<
emph
type
="
italics
"/>
BbEe
<
emph.end
type
="
italics
"/>
ſecante perpendicula
<
lb
/>
<
emph
type
="
italics
"/>
AB, ab, DE, de,
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
B, b, E, e,
<
emph.end
type
="
italics
"/>
<
lb
/>
exponantur velocitates initi
<
lb
/>
ales per perpendicula
<
emph
type
="
italics
"/>
AB,
<
lb
/>
DE,
<
emph.end
type
="
italics
"/>
& tempora per lineas
<
lb
/>
<
emph
type
="
italics
"/>
Aa, Dd.
<
emph.end
type
="
italics
"/>
Eſt ergo ut
<
emph
type
="
italics
"/>
Aa
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
Dd
<
emph.end
type
="
italics
"/>
ita (per Hypotheſin)
<
emph
type
="
italics
"/>
DE
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
AB,
<
emph.end
type
="
italics
"/>
& ita (ex natura Hy
<
lb
/>
perbolæ)
<
emph
type
="
italics
"/>
CA
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
CD
<
emph.end
type
="
italics
"/>
; & com
<
lb
/>
ponendo, ita
<
emph
type
="
italics
"/>
Ca
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Cd.
<
emph.end
type
="
italics
"/>
Ergo
<
lb
/>
areæ
<
emph
type
="
italics
"/>
ABba, DEed,
<
emph.end
type
="
italics
"/>
hoc eſt, ſpatia deſcripta æquamtur inter ſe,
<
lb
/>
& velocitates primæ
<
emph
type
="
italics
"/>
AB, DE
<
emph.end
type
="
italics
"/>
ſunt ultimis
<
emph
type
="
italics
"/>
ab, de,
<
emph.end
type
="
italics
"/>
& propterea
<
lb
/>
(dividendo) partibus etiam ſuis amiſſis
<
emph
type
="
italics
"/>
AB-ab, DE-de
<
emph.end
type
="
italics
"/>
pro
<
lb
/>
portionales.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO VII. THEOREMA V.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corpora Sphærica quibus reſiſtitur in duplicata ratione velocitatum,
<
lb
/>
temporibus quæ ſunt ut motus primi directe & reſiſtentiæ pri
<
lb
/>
mæ inverſe, amittent partes motuum proportionales totis, &
<
lb
/>
ſpatia deſcribent temporibus iſtis in velocitates primas ductis
<
lb
/>
proportionalia.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Namque motuum partes amiſſæ ſunt ut reſiſtentiæ & tempora </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>