Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
251
252
253
254
255
256
257
258
259
260
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/254.jpg
"
pagenum
="
226
"/>
<
arrow.to.target
n
="
note202
"/>
una cum (1/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
) in
<
emph
type
="
italics
"/>
na
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
erit nihil. </
s
>
<
s
>Et propterea momentum ip
<
lb
/>
ſius (1/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
) ſeu A
<
emph
type
="
sup
"/>
-
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
erit-(
<
emph
type
="
italics
"/>
na
<
emph.end
type
="
italics
"/>
/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
+1).
<
emph
type
="
italics
"/>
q.ED.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note202
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
5. Et cum A
<
emph
type
="
sup
"/>
1/2
<
emph.end
type
="
sup
"/>
in A
<
emph
type
="
sup
"/>
1/2
<
emph.end
type
="
sup
"/>
ſit A, momentum ipſius A
<
emph
type
="
sup
"/>
1/2
<
emph.end
type
="
sup
"/>
ductum in
<
lb
/>
2A
<
emph
type
="
sup
"/>
1/2
<
emph.end
type
="
sup
"/>
erit
<
emph
type
="
italics
"/>
a,
<
emph.end
type
="
italics
"/>
per Cas. </
s
>
<
s
>3: ideoque momentum ipſius A
<
emph
type
="
sup
"/>
1/2
<
emph.end
type
="
sup
"/>
erit (
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
/2A 1/2)
<
lb
/>
ſive 1/2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
-1/2
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>Et generaliter ſi ponatur A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m/n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
æquale B, erit A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
æ
<
lb
/>
quale B
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
, ideoque
<
emph
type
="
italics
"/>
ma
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
æquale
<
emph
type
="
italics
"/>
nb
<
emph.end
type
="
italics
"/>
B
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1,
<
emph.end
type
="
sup
"/>
&
<
emph
type
="
italics
"/>
ma
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
-1
<
emph.end
type
="
sup
"/>
æqua
<
lb
/>
le
<
emph
type
="
italics
"/>
nb
<
emph.end
type
="
italics
"/>
B
<
emph
type
="
sup
"/>
-1
<
emph.end
type
="
sup
"/>
ſeu
<
emph
type
="
italics
"/>
nb
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
-
<
emph
type
="
italics
"/>
m/n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
, adeoque
<
emph
type
="
italics
"/>
m/n a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
(
<
emph
type
="
italics
"/>
m-n/n
<
emph.end
type
="
italics
"/>
)
<
emph.end
type
="
sup
"/>
æquale
<
emph
type
="
italics
"/>
b,
<
emph.end
type
="
italics
"/>
id eſt, æquale
<
lb
/>
momento ipſius A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m/n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
,
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
6. Igitur Genitæ cujuſeunque A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
B
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
momentum eſt mo
<
lb
/>
mentum ipſius A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
ductum in B
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
, una cum momento ipſius B
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
du
<
lb
/>
cto in A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
, id eſt
<
emph
type
="
italics
"/>
ma
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
B
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
nb
<
emph.end
type
="
italics
"/>
B
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
; idque ſive dignita
<
lb
/>
tum indices
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
ſint integri numeri vel fracti, ſive affirmati
<
lb
/>
vi vel negativi. </
s
>
<
s
>Et par eſt ratio contenti ſub pluribus dignitati
<
lb
/>
bus.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Hinc in continue proportionalibus, ſi terminus unus
<
lb
/>
datur, momenta terminorum reliquorum erunt ut iidem termini
<
lb
/>
multiplicati per numerum intervallorum inter ipſos & terminum
<
lb
/>
datum. </
s
>
<
s
>Sunto A, B, C, D, E, F continue proportionales; & ſi
<
lb
/>
detur terminus C, momenta reliquorum terminorum erunt inter
<
lb
/>
ſe ut-2A, -B, D, 2E, 3F. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Et ſi in quatuor proportionalibus duæ mediæ dentur,
<
lb
/>
momenta extremarum erunt ut eædem extremæ. </
s
>
<
s
>Idem intelligen
<
lb
/>
dum eſt de lateribus rectanguli cujuſcunQ.E.D.ti. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Et ſi ſumma vel differentia duorum quadratorum detur,
<
lb
/>
momenta laterum erunt reciproce ut latera. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Scholium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>In literis quæ mihi cum Geometra peritiſſimo
<
emph
type
="
italics
"/>
G.G. Leibnitio
<
emph.end
type
="
italics
"/>
an
<
lb
/>
nis abhinc decem intercedebant, cum ſignificarem me compotem
<
lb
/>
eſſe methodi determinandi Maximas & Minimas, ducendi Tangen
<
lb
/>
tes, & ſimilia peragendi, quæ in terminis ſurdis æque ac in ratio
<
lb
/>
nalibus procederet, & literis tranſpoſitis hanc ſententiam involven-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>