Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
251
252
253
254
255
256
257
258
259
260
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/256.jpg
"
pagenum
="
228
"/>
<
arrow.to.target
n
="
note204
"/>
res abſolutæ
<
emph
type
="
italics
"/>
AC, IC, KC, LC,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>erunt in progreſſione Geo
<
lb
/>
metrica.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
Et ſimili argumento, in aſcenſu corporis, ſu
<
lb
/>
mendo, ad contrariam partem puncti
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
æquales areas
<
emph
type
="
italics
"/>
ABmi,
<
lb
/>
imnk, knol,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>conſtabit quod vires abſolutæ
<
emph
type
="
italics
"/>
AC, iC, kC, lC,
<
emph.end
type
="
italics
"/>
&c.
<
lb
/>
</
s
>
<
s
>ſunt continue proportionales. </
s
>
<
s
>Ideoque ſi ſpatia omnia in aſcenſu &
<
lb
/>
deſcenſu capiantur æqualia; omnes vires abſolutæ
<
emph
type
="
italics
"/>
lC, kC, iC, AC,
<
lb
/>
IC, KC, LC,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>erunt continue proportionales.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note204
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
figure
id
="
id.039.01.256.1.jpg
"
xlink:href
="
039/01/256/1.jpg
"
number
="
151
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Hinc ſi ſpatium deſcriptum exponatur per aream Hy
<
lb
/>
perbolicam
<
emph
type
="
italics
"/>
ABNK
<
emph.end
type
="
italics
"/>
; exponi poſſunt vis gravitatis, velocitas cor
<
lb
/>
poris & reſiſtentia Medii per lineas
<
emph
type
="
italics
"/>
AC, AP
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
reſpective;
<
lb
/>
& vice verſa. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Et velocitatis maximæ, quam corpus in infinitum deſcen
<
lb
/>
dendo poteſt unquam acquirere, exponens eſt linea
<
emph
type
="
italics
"/>
AC.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Igitur ſi in data aliqua velocitate cognoſcatur reſiſten
<
lb
/>
tia Medii, invenietur velocitas maxima, ſumendo ipſam ad veloci-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>