Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
251
251
252
252
253
253
254
254
255
255
256
256
257
257
258
258
259
259
260
260
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/256.jpg" pagenum="228"/>
                    <arrow.to.target n="note204"/>
                  res abſolutæ
                    <emph type="italics"/>
                  AC, IC, KC, LC,
                    <emph.end type="italics"/>
                  &c. </s>
                  <s>erunt in progreſſione Geo­
                    <lb/>
                  metrica.
                    <emph type="italics"/>
                  Q.E.D.
                    <emph.end type="italics"/>
                  Et ſimili argumento, in aſcenſu corporis, ſu­
                    <lb/>
                  mendo, ad contrariam partem puncti
                    <emph type="italics"/>
                  A,
                    <emph.end type="italics"/>
                  æquales areas
                    <emph type="italics"/>
                  ABmi,
                    <lb/>
                  imnk, knol,
                    <emph.end type="italics"/>
                  &c. </s>
                  <s>conſtabit quod vires abſolutæ
                    <emph type="italics"/>
                  AC, iC, kC, lC,
                    <emph.end type="italics"/>
                  &c.
                    <lb/>
                  </s>
                  <s>ſunt continue proportionales. </s>
                  <s>Ideoque ſi ſpatia omnia in aſcenſu &
                    <lb/>
                  deſcenſu capiantur æqualia; omnes vires abſolutæ
                    <emph type="italics"/>
                  lC, kC, iC, AC,
                    <lb/>
                  IC, KC, LC,
                    <emph.end type="italics"/>
                  &c. </s>
                  <s>erunt continue proportionales.
                    <emph type="italics"/>
                  Q.E.D.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note204"/>
                  DE MOTU
                    <lb/>
                  CORPORUM</s>
                </p>
                <figure id="id.039.01.256.1.jpg" xlink:href="039/01/256/1.jpg" number="151"/>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corol.
                    <emph.end type="italics"/>
                  1. Hinc ſi ſpatium deſcriptum exponatur per aream Hy­
                    <lb/>
                  perbolicam
                    <emph type="italics"/>
                  ABNK
                    <emph.end type="italics"/>
                  ; exponi poſſunt vis gravitatis, velocitas cor­
                    <lb/>
                  poris & reſiſtentia Medii per lineas
                    <emph type="italics"/>
                  AC, AP
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  AK
                    <emph.end type="italics"/>
                  reſpective;
                    <lb/>
                  & vice verſa. </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corol.
                    <emph.end type="italics"/>
                  2. Et velocitatis maximæ, quam corpus in infinitum deſcen­
                    <lb/>
                  dendo poteſt unquam acquirere, exponens eſt linea
                    <emph type="italics"/>
                  AC.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Corol.
                    <emph.end type="italics"/>
                  3. Igitur ſi in data aliqua velocitate cognoſcatur reſiſten­
                    <lb/>
                  tia Medii, invenietur velocitas maxima, ſumendo ipſam ad veloci-</s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>