Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
251
(231)
252
(232)
253
(233)
254
(234)
255
(235)
256
(236)
257
(237)
258
(238)
259
(239)
260
(240)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(239)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div579
"
type
="
section
"
level
="
1
"
n
="
342
">
<
p
>
<
s
xml:id
="
echoid-s5873
"
xml:space
="
preserve
">
<
pb
o
="
239
"
file
="
0259
"
n
="
259
"
rhead
="
LIBER III.
"/>
ad portionem, RCT, ergo ex æquali omnia quadrata, KG, adom-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0259-01
"
xlink:href
="
note-0259-01a
"
xml:space
="
preserve
">Cor. 19.
<
lb
/>
huius.</
note
>
nia quadrata figuræ, LCRT, demptis omnibus quadratis trilinei,
<
lb
/>
CLT, erunt vt, KG, ad portionem, RCT. </
s
>
<
s
xml:id
="
echoid-s5874
"
xml:space
="
preserve
">Eodem modo oſten-
<
lb
/>
demus omnia quadrata, KG, ad omnia quadrata figuræ, VEGY,
<
lb
/>
demptis omnibus quadratis trilinei, EGY, eſſe vt, KG, ad portio-
<
lb
/>
nem, VEY, quæ conſerua.</
s
>
<
s
xml:id
="
echoid-s5875
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5876
"
xml:space
="
preserve
">Omnia inſuper quadrata, KG, ad omnia quadrata, RY, vt
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0259-02
"
xlink:href
="
note-0259-02a
"
xml:space
="
preserve
">Coroll.
<
lb
/>
26. l. 2.</
note
>
probauimus, ſunt vt, KG, ad, RY, item omnia quadrata, RY,
<
lb
/>
ad rectangula ſub, RY, R Φ, ſunt vt, RY, ad R Φ, & </
s
>
<
s
xml:id
="
echoid-s5877
"
xml:space
="
preserve
">tandem re-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0259-03
"
xlink:href
="
note-0259-03a
"
xml:space
="
preserve
">Caroll. 1.
<
lb
/>
26. l. 2.</
note
>
ctangula ſub, R Φ, RY, adrectangula ſub portione, RFV, & </
s
>
<
s
xml:id
="
echoid-s5878
"
xml:space
="
preserve
">
<
lb
/>
ſub, RY, ſunt vt, R Φ, ad portionem, RFV, ergo ex æquali
<
lb
/>
omnia quadrata, KG, adrectangula ſub portione, RFV, & </
s
>
<
s
xml:id
="
echoid-s5879
"
xml:space
="
preserve
">ſub,
<
lb
/>
RY, erunt vt, KG, ad portionem, RFV, ergo, colligendo, om-
<
lb
/>
nia quadrata, KG, ad omnia quadrata figurarum, LCRT, VE
<
lb
/>
GY, demptis omnibus quadratis trilineorum, CLT, EGY, & </
s
>
<
s
xml:id
="
echoid-s5880
"
xml:space
="
preserve
">ad
<
lb
/>
omnia quadrata, RY, & </
s
>
<
s
xml:id
="
echoid-s5881
"
xml:space
="
preserve
">ad rectangula ſemel ſub portione, RFV,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s5882
"
xml:space
="
preserve
">ſub, RY, erunt vt, KG, ad portiones, RCT, VEY, RFV,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s5883
"
xml:space
="
preserve
">ad rectangulum, RY, .</
s
>
<
s
xml:id
="
echoid-s5884
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s5885
"
xml:space
="
preserve
">vt, KG, ad portionem, TCFEY.</
s
>
<
s
xml:id
="
echoid-s5886
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5887
"
xml:space
="
preserve
">Reliquum eſt, vt comparemus omnia quadrata, KG, ad omnia
<
lb
/>
quadrata portionis, RFV, & </
s
>
<
s
xml:id
="
echoid-s5888
"
xml:space
="
preserve
">ad rectangula ſub eadem, & </
s
>
<
s
xml:id
="
echoid-s5889
"
xml:space
="
preserve
">ſub, RY,
<
lb
/>
quia autem, RV, æquatur ipſi, TY, portio, RFV, æquatur por-
<
lb
/>
tioni, THY, etiam in ellipſi, quia, RV, TY, ſunt parallelæ,
<
lb
/>
ideò omnia quadrata portionis, RFV, ſunt rectangula ſub portio-
<
lb
/>
ne, RFV, & </
s
>
<
s
xml:id
="
echoid-s5890
"
xml:space
="
preserve
">ſub portione, THY, quibus ſi iunxeris rectangula
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0259-04
"
xlink:href
="
note-0259-04a
"
xml:space
="
preserve
">A. 23. l. 2.</
note
>
ſub eadem portione, RFV, & </
s
>
<
s
xml:id
="
echoid-s5891
"
xml:space
="
preserve
">ſub, RY, componentur rectangu-
<
lb
/>
la ſub eadem portione, RFV, & </
s
>
<
s
xml:id
="
echoid-s5892
"
xml:space
="
preserve
">ſub quadrilineo, RTHYV.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5893
"
xml:space
="
preserve
">Nuncvel, RV, eſt æqualis ipſi, VY, & </
s
>
<
s
xml:id
="
echoid-s5894
"
xml:space
="
preserve
">ſic, RY, erit quadratum,
<
lb
/>
ſiue rhombus, vel, RV, non eſt æqualis ipſi, VY, & </
s
>
<
s
xml:id
="
echoid-s5895
"
xml:space
="
preserve
">tunc in ipſa,
<
lb
/>
VY, producta, ſi opus ſit ſumatur, VZ, æqualis, ipſi, VR, & </
s
>
<
s
xml:id
="
echoid-s5896
"
xml:space
="
preserve
">du-
<
lb
/>
cta per, Z, Z Π, ipſi, RV, parallela, ſit conſtitutum, RZ, qua-
<
lb
/>
dratum, vel rhombus ipſius, RV: </
s
>
<
s
xml:id
="
echoid-s5897
"
xml:space
="
preserve
">Omnia ergo quadrata, KG, ad
<
lb
/>
omnia quadrata, RZ, habent rationem compoſitam ex ratione
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0259-05
"
xlink:href
="
note-0259-05a
"
xml:space
="
preserve
">Diffin. 12.
<
lb
/>
l. 1.</
note
>
quadrati, KL, ad quadratum, R Π, vel ad quadratum, RV, & </
s
>
<
s
xml:id
="
echoid-s5898
"
xml:space
="
preserve
">
<
lb
/>
ex ratione ipſius, KB, ad, RV, quæ duæ rationes componunt ra-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0259-06
"
xlink:href
="
note-0259-06a
"
xml:space
="
preserve
">11. l. 2,</
note
>
tionem parallelepipedi rectanguli ſub altitudine, BK, baſi autem
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0259-07
"
xlink:href
="
note-0259-07a
"
xml:space
="
preserve
">D. Cor. 4.</
note
>
quadrato, KL, ad cubum, RV. </
s
>
<
s
xml:id
="
echoid-s5899
"
xml:space
="
preserve
">Siautem, CE, FH, ſint tantum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0259-08
"
xlink:href
="
note-0259-08a
"
xml:space
="
preserve
">Gen. 34.
<
lb
/>
l. 2.</
note
>
diametri, ſic dicemus, nempè, Omnia quadrata, KG, ad omnia
<
lb
/>
quadrata, RZ, rhombi habent rationem compoſitam ex ratione,
<
lb
/>
KL, ad, R Π, bis ſumpta, & </
s
>
<
s
xml:id
="
echoid-s5900
"
xml:space
="
preserve
">ex ratione, KB, ad, RV, quæ tres
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0259-09
"
xlink:href
="
note-0259-09a
"
xml:space
="
preserve
">23. huius.</
note
>
rationes componunt rationem parallelepiped ſub altitudine, KL,
<
lb
/>
baſi parallelogrammo, KG, ad parallelepipedum ſub altitudine,
<
lb
/>
RV, baſi autem rhombo, RZ: </
s
>
<
s
xml:id
="
echoid-s5901
"
xml:space
="
preserve
">Omnia verò quadrata, RZ, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>