Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
261
262
263
264
265
266
267
268
269
270
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/262.jpg
"
pagenum
="
234
"/>
<
arrow.to.target
n
="
note210
"/>
<
emph
type
="
italics
"/>
o
<
emph.end
type
="
italics
"/>
√1+QQ+(QR
<
emph
type
="
italics
"/>
oo
<
emph.end
type
="
italics
"/>
/√1+QQ) ſunt arcus
<
emph
type
="
italics
"/>
GH
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
HI.
<
emph.end
type
="
italics
"/>
Præterea ſi ab
<
lb
/>
Ordinata
<
emph
type
="
italics
"/>
CH
<
emph.end
type
="
italics
"/>
ſubducatur ſemiſumma Ordinatarum
<
emph
type
="
italics
"/>
BG
<
emph.end
type
="
italics
"/>
ac
<
emph
type
="
italics
"/>
DI,
<
emph.end
type
="
italics
"/>
<
lb
/>
& ab Ordinata
<
emph
type
="
italics
"/>
DI
<
emph.end
type
="
italics
"/>
ſubducatur ſemiſumma Ordinatarum
<
emph
type
="
italics
"/>
CH
<
emph.end
type
="
italics
"/>
&
<
lb
/>
<
emph
type
="
italics
"/>
EK,
<
emph.end
type
="
italics
"/>
manebunt arcuum
<
emph
type
="
italics
"/>
GI
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
HK
<
emph.end
type
="
italics
"/>
ſagittæ R
<
emph
type
="
italics
"/>
oo
<
emph.end
type
="
italics
"/>
& R
<
emph
type
="
italics
"/>
oo
<
emph.end
type
="
italics
"/>
+3S
<
emph
type
="
italics
"/>
o
<
emph.end
type
="
italics
"/>
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>
<
lb
/>
Et hæ ſunt lineolis
<
emph
type
="
italics
"/>
LH
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NI
<
emph.end
type
="
italics
"/>
proportionales, adeoQ.E.I. du
<
lb
/>
plicata ratione temporum infinite parvorum T &
<
emph
type
="
italics
"/>
t,
<
emph.end
type
="
italics
"/>
& inde ratio
<
lb
/>
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
/T eſt √(R+3S
<
emph
type
="
italics
"/>
o
<
emph.end
type
="
italics
"/>
/R) ſeu (R+3/2S
<
emph
type
="
italics
"/>
o
<
emph.end
type
="
italics
"/>
/R): & (
<
emph
type
="
italics
"/>
tXGH
<
emph.end
type
="
italics
"/>
/T)-
<
emph
type
="
italics
"/>
HI+(2MIXNI/HI),
<
emph.end
type
="
italics
"/>
<
lb
/>
ſubſtituendo ipſorum
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
/T,
<
emph
type
="
italics
"/>
GH, HI, MI
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
NI
<
emph.end
type
="
italics
"/>
valores jam in
<
lb
/>
ventos, evadit (3S
<
emph
type
="
italics
"/>
oo
<
emph.end
type
="
italics
"/>
/2R)√1+Qq. </
s
>
<
s
>Et cum 2
<
emph
type
="
italics
"/>
NI
<
emph.end
type
="
italics
"/>
ſit 2R
<
emph
type
="
italics
"/>
oo,
<
emph.end
type
="
italics
"/>
Re
<
lb
/>
ſiſtentia jam erit ad Gravitatem ut (3S
<
emph
type
="
italics
"/>
oo
<
emph.end
type
="
italics
"/>
/2R)√1+QQ ad 2R
<
emph
type
="
italics
"/>
oo,
<
emph.end
type
="
italics
"/>
<
lb
/>
id eſt, ut 3S√1+QQ ad 4RR. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note210
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Velocitas autem ea eſt quacum corpus de loco quovis
<
emph
type
="
italics
"/>
H,
<
emph.end
type
="
italics
"/>
ſe
<
lb
/>
cundum tangentem
<
emph
type
="
italics
"/>
HN
<
emph.end
type
="
italics
"/>
egrediens, in Parabola diametrum
<
emph
type
="
italics
"/>
HC
<
emph.end
type
="
italics
"/>
<
lb
/>
& latus rectum (
<
emph
type
="
italics
"/>
HNq/NI
<
emph.end
type
="
italics
"/>
) ſeu (1+QQ/R) habente, deinceps in vacuo
<
lb
/>
moveri poteſt. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Et reſiſtentia eſt ut Medii denſitas & quadratum velocitatis
<
lb
/>
conjunctim, & propterea Medii denſitas eſt ut reſiſtentia directe
<
lb
/>
& quadratum velocitatis inverſe, id eſt, ut (3S√1+QQ/4RR) directe
<
lb
/>
& (1+QQ/R) inverſe, hoc eſt, ut (S/R√1+QQ).
<
emph
type
="
italics
"/>
q.EI.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Si tangens
<
emph
type
="
italics
"/>
HN
<
emph.end
type
="
italics
"/>
producatur utrinQ.E.D.nec occurrat
<
lb
/>
Ordinatæ cuilibet
<
emph
type
="
italics
"/>
AF
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
: erit (
<
emph
type
="
italics
"/>
HT/AC
<
emph.end
type
="
italics
"/>
) æqualis √1+QQ, adeo
<
lb
/>
Q.E.I. ſuperioribus pro √1+QQ ſcribi poteſt. </
s
>
<
s
>Qua ratione
<
lb
/>
Reſiſtentia erit ad Gravitatem ut 3SX
<
emph
type
="
italics
"/>
HT
<
emph.end
type
="
italics
"/>
ad 4RRX
<
emph
type
="
italics
"/>
AC,
<
emph.end
type
="
italics
"/>
Velo
<
lb
/>
citas erit ut (
<
emph
type
="
italics
"/>
HT/AC
<
emph.end
type
="
italics
"/>
√R), & Medii denſitas erit ut (SX
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
/RX
<
emph
type
="
italics
"/>
HT
<
emph.end
type
="
italics
"/>
). </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Et hinc, ſi Curva linea
<
emph
type
="
italics
"/>
PFHQ
<
emph.end
type
="
italics
"/>
definiatur per rela
<
lb
/>
tionem inter baſem ſeu abſciſſam
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
& ordinatim applicatam </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>