Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
261
262
263
264
265
266
267
268
269
270
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/263.jpg
"
pagenum
="
235
"/>
<
emph
type
="
italics
"/>
CH,
<
emph.end
type
="
italics
"/>
(ut moris eſt) & valor ordinatim applicatæ reſolvatur in ſe
<
lb
/>
<
arrow.to.target
n
="
note211
"/>
riem convergentem: Problema per primos ſeriei terminos expe
<
lb
/>
dite ſolvetur, ut in exemplis ſequentibus. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note211
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Exempl.
<
emph.end
type
="
italics
"/>
1. Sit Linea
<
emph
type
="
italics
"/>
PFHQ
<
emph.end
type
="
italics
"/>
Semicirculus ſuper diametro
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
<
lb
/>
deſcriptus, & requiratur Medii denſitas quæ faciat ut Projectile
<
lb
/>
in hac linea moveatur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Biſecetur diameter
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
dic
<
emph
type
="
italics
"/>
AQ n, AC a, CH e,
<
emph.end
type
="
italics
"/>
&
<
lb
/>
<
emph
type
="
italics
"/>
CD o
<
emph.end
type
="
italics
"/>
: & erit
<
emph
type
="
italics
"/>
DIq
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
AQq-ADq=nn-aa-2ao-oo,
<
emph.end
type
="
italics
"/>
ſeu
<
lb
/>
<
emph
type
="
italics
"/>
ee-2ao-oo,
<
emph.end
type
="
italics
"/>
& radice per methodum noſtram extracta, fiet
<
lb
/>
<
emph
type
="
italics
"/>
DI=e-(ao/e)-(oo/2e)-(aaoo/2e
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
)-(ao
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
/2e
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
)-(a
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
o
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
/2e
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
)
<
emph.end
type
="
italics
"/>
-&c. </
s
>
<
s
>Hic ſcribatur
<
emph
type
="
italics
"/>
nn
<
emph.end
type
="
italics
"/>
<
lb
/>
pro
<
emph
type
="
italics
"/>
ee+aa,
<
emph.end
type
="
italics
"/>
& evadet
<
emph
type
="
italics
"/>
DI=e-(ao/e)-(nnoo/2e
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
)-(anno
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
/2e
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
)
<
emph.end
type
="
italics
"/>
-&c. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Hujuſmodi ſeries diſtinguo in terminos ſucceſſivos in hunc mo
<
lb
/>
dum. </
s
>
<
s
>Terminum primum appello in quo quantitas infinite par
<
lb
/>
va
<
emph
type
="
italics
"/>
o
<
emph.end
type
="
italics
"/>
non extat; ſecundum in quo quantitas illa eſt unius dimen
<
lb
/>
ſionis, tertium in quo extat
<
lb
/>
<
figure
id
="
id.039.01.263.1.jpg
"
xlink:href
="
039/01/263/1.jpg
"
number
="
154
"/>
<
lb
/>
duarum, quartum in quo
<
lb
/>
trium eſt, & ſic in infiNI
<
lb
/>
tum. </
s
>
<
s
>Et primus terminus
<
lb
/>
qui hic eſt
<
emph
type
="
italics
"/>
e,
<
emph.end
type
="
italics
"/>
denotabit ſem
<
lb
/>
per longitudinem Ordinatæ
<
lb
/>
<
emph
type
="
italics
"/>
CH
<
emph.end
type
="
italics
"/>
inſiſtentis ad initium
<
lb
/>
indefinitæ quantitatis
<
emph
type
="
italics
"/>
o
<
emph.end
type
="
italics
"/>
; ſe
<
lb
/>
cundus terminus qui hic eſt
<
lb
/>
(
<
emph
type
="
italics
"/>
ao/e
<
emph.end
type
="
italics
"/>
), denotabit differentiam
<
lb
/>
inter
<
emph
type
="
italics
"/>
CH
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
DN,
<
emph.end
type
="
italics
"/>
id eſt, lineolam
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
quæ abſcinditur com
<
lb
/>
plendo parallelogrammum
<
emph
type
="
italics
"/>
HCDM,
<
emph.end
type
="
italics
"/>
atque adeo poſitionem tan
<
lb
/>
gentis
<
emph
type
="
italics
"/>
HN
<
emph.end
type
="
italics
"/>
ſemper determinat: ut in hoc caſu capiendo
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
HM
<
emph.end
type
="
italics
"/>
ut eſt (
<
emph
type
="
italics
"/>
ao/e
<
emph.end
type
="
italics
"/>
) ad
<
emph
type
="
italics
"/>
o,
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
e.
<
emph.end
type
="
italics
"/>
Terminus tertius qui hic eſt
<
lb
/>
(
<
emph
type
="
italics
"/>
nnoo/2e
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
) deſignabit lineolam
<
emph
type
="
italics
"/>
IN
<
emph.end
type
="
italics
"/>
quæ jacet inter tangentem & cur
<
lb
/>
vam, adeoQ.E.D.terminat angulum contactus
<
emph
type
="
italics
"/>
IHN
<
emph.end
type
="
italics
"/>
ſeu curvatu
<
lb
/>
ram quam curva linea habet in
<
emph
type
="
italics
"/>
H.
<
emph.end
type
="
italics
"/>
Si lineola illa
<
emph
type
="
italics
"/>
IN
<
emph.end
type
="
italics
"/>
finitæ eſt
<
lb
/>
magnitudinis, deſignabitur per terminum tertium una cum ſe
<
lb
/>
quentibus in infinitum. </
s
>
<
s
>At ſi lineola illa minuatur in infinitum, </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>