Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
261
262
263
264
265
266
267
268
269
270
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/267.jpg
"
pagenum
="
239
"/>
Aſymptoton ejus in
<
emph
type
="
italics
"/>
V,
<
emph.end
type
="
italics
"/>
fuerit
<
emph
type
="
italics
"/>
VG
<
emph.end
type
="
italics
"/>
reciproce ut ipſius
<
emph
type
="
italics
"/>
ZX
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
note215
"/>
dignitas aliqua
<
emph
type
="
italics
"/>
DN
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
,
<
emph.end
type
="
italics
"/>
cujus index eſt numerus
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
: & quæratur
<
lb
/>
Medii denſitas, qua Projectile progrediatur in hac curva. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note215
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Pro
<
emph
type
="
italics
"/>
BN, BD, NX
<
emph.end
type
="
italics
"/>
ſcribantur A, O, C reſpective, ſitque
<
emph
type
="
italics
"/>
VZ
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
XZ
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
d
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
e,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
VG
<
emph.end
type
="
italics
"/>
æqualis (
<
emph
type
="
italics
"/>
bb/DN
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
), & erit
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
æqua
<
lb
/>
lis A-O,
<
emph
type
="
italics
"/>
VG
<
emph.end
type
="
italics
"/>
=(
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
/—
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
A-O),
<
emph
type
="
italics
"/>
VZ
<
emph.end
type
="
italics
"/>
=
<
emph
type
="
italics
"/>
d/e
<
emph.end
type
="
italics
"/>
—A-O, &
<
emph
type
="
italics
"/>
GD
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
NX-VZ
<
lb
/>
-VG
<
emph.end
type
="
italics
"/>
æqualis C-
<
emph
type
="
italics
"/>
d/e
<
emph.end
type
="
italics
"/>
A+
<
emph
type
="
italics
"/>
d/e
<
emph.end
type
="
italics
"/>
O-(
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
/—
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
A-O). Reſolvatur terminus ille
<
lb
/>
(
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
/—
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
A-O) in ſeriem infinitam (
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
)+(
<
emph
type
="
italics
"/>
nbb
<
emph.end
type
="
italics
"/>
/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+1
<
emph.end
type
="
sup
"/>
)O+(
<
emph
type
="
italics
"/>
nn+n
<
emph.end
type
="
italics
"/>
/2A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+2
<
emph.end
type
="
sup
"/>
)
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
O
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
+
<
lb
/>
(
<
emph
type
="
italics
"/>
n
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
+3nn+2n
<
emph.end
type
="
italics
"/>
/6A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+3
<
emph.end
type
="
sup
"/>
)
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
O
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
&c. </
s
>
<
s
>ac fiet
<
emph
type
="
italics
"/>
GD
<
emph.end
type
="
italics
"/>
æqualis C-
<
emph
type
="
italics
"/>
d/e
<
emph.end
type
="
italics
"/>
A-(
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
)+
<
lb
/>
<
emph
type
="
italics
"/>
d/e
<
emph.end
type
="
italics
"/>
O-(
<
emph
type
="
italics
"/>
nbb
<
emph.end
type
="
italics
"/>
/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+1
<
emph.end
type
="
sup
"/>
)O-(
<
emph
type
="
italics
"/>
+nn+n
<
emph.end
type
="
italics
"/>
/2A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+2
<
emph.end
type
="
sup
"/>
)
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
O
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
-(
<
emph
type
="
italics
"/>
+n
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
+3nn+2n
<
emph.end
type
="
italics
"/>
/6A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+3
<
emph.end
type
="
sup
"/>
)
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
O
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
&c. </
s
>
<
s
>Hu
<
lb
/>
jus ſeriei terminus ſecundus
<
emph
type
="
italics
"/>
d/e
<
emph.end
type
="
italics
"/>
O-(
<
emph
type
="
italics
"/>
nbb
<
emph.end
type
="
italics
"/>
/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+1
<
emph.end
type
="
sup
"/>
)O uſurpandus eſt pro Q
<
emph
type
="
italics
"/>
o,
<
emph.end
type
="
italics
"/>
<
lb
/>
tertius (
<
emph
type
="
italics
"/>
nn+n
<
emph.end
type
="
italics
"/>
/2A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+2
<
emph.end
type
="
sup
"/>
)
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
O
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
pro R
<
emph
type
="
italics
"/>
o
<
emph.end
type
="
italics
"/>
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
, quartus (
<
emph
type
="
italics
"/>
n
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
+3nn+2n
<
emph.end
type
="
italics
"/>
/6A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+3
<
emph.end
type
="
sup
"/>
)
<
emph
type
="
italics
"/>
bb
<
emph.end
type
="
italics
"/>
O
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
pro
<
lb
/>
S
<
emph
type
="
italics
"/>
o
<
emph.end
type
="
italics
"/>
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>Et inde Medii denſitas (S/R√1+QQ), in loco quovis
<
emph
type
="
italics
"/>
G,
<
emph.end
type
="
italics
"/>
fit
<
lb
/>
(
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+2/3√A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
+(
<
emph
type
="
italics
"/>
dd/ee
<
emph.end
type
="
italics
"/>
)A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
-(
<
emph
type
="
italics
"/>
2dnbb/e
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
)A+(
<
emph
type
="
italics
"/>
nnb
<
emph.end
type
="
italics
"/>
<
emph
type
="
sup
"/>
4
<
emph.end
type
="
sup
"/>
/A
<
emph
type
="
sup
"/>
2
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
)), adeoque ſi in
<
emph
type
="
italics
"/>
VZ
<
emph.end
type
="
italics
"/>
capiatur
<
emph
type
="
italics
"/>
VY
<
emph.end
type
="
italics
"/>
<
lb
/>
æqualis
<
emph
type
="
italics
"/>
nXVG,
<
emph.end
type
="
italics
"/>
denſitas illa eſt reciproce ut
<
emph
type
="
italics
"/>
XY.
<
emph.end
type
="
italics
"/>
Sunt enim A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
<
lb
/>
& (
<
emph
type
="
italics
"/>
dd/ee
<
emph.end
type
="
italics
"/>
)A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
-(2
<
emph
type
="
italics
"/>
dnbb/e
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
)A+(
<
emph
type
="
italics
"/>
nnb
<
emph.end
type
="
italics
"/>
<
emph
type
="
sup
"/>
4
<
emph.end
type
="
sup
"/>
/A
<
emph
type
="
sup
"/>
2
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
) ipſarum
<
emph
type
="
italics
"/>
XZ
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
ZY
<
emph.end
type
="
italics
"/>
quadrata. </
s
>
<
s
>Reſiſten
<
lb
/>
tia autem in eodem loco
<
emph
type
="
italics
"/>
G
<
emph.end
type
="
italics
"/>
fit ad gravitatem ut 3S in (
<
emph
type
="
italics
"/>
XY
<
emph.end
type
="
italics
"/>
/A) ad 4RR,
<
lb
/>
id eſt,
<
emph
type
="
italics
"/>
XY
<
emph.end
type
="
italics
"/>
ad (
<
emph
type
="
italics
"/>
2nn+2n/n+2)VG.
<
emph.end
type
="
italics
"/>
Et velocitas ibidem ea ipſa eſt qua
<
lb
/>
cum corpus projectum in Parabola pergeret, verticem
<
emph
type
="
italics
"/>
G,
<
emph.end
type
="
italics
"/>
diametrum
<
lb
/>
<
emph
type
="
italics
"/>
GD
<
emph.end
type
="
italics
"/>
& latus rectum (1+QQ/R) ſeu (2
<
emph
type
="
italics
"/>
XYquad./—nn+n
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
VG
<
emph.end
type
="
italics
"/>
) habente.
<
emph
type
="
italics
"/>
Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>