Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
261
262
263
264
265
266
267
268
269
270
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/270.jpg
"
pagenum
="
242
"/>
<
arrow.to.target
n
="
note218
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note218
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Reg.
<
emph.end
type
="
italics
"/>
4. Quoniam denſitas Medii prope verticem Hyperbolæ
<
lb
/>
major eſt quam in loco
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
ut habeatur denſitas mediocris, debet
<
lb
/>
ratio minimæ tangentium
<
emph
type
="
italics
"/>
GT
<
emph.end
type
="
italics
"/>
ad tangentem
<
emph
type
="
italics
"/>
AH
<
emph.end
type
="
italics
"/>
inveniri, &
<
lb
/>
denſitas in
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
angeri in ratione paudo majore quam ſemiſummæ
<
lb
/>
harum tangentium ad minimam tangentium
<
emph
type
="
italics
"/>
GT.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Reg.
<
emph.end
type
="
italics
"/>
5. Si dantur longitudines
<
emph
type
="
italics
"/>
AH, AI,
<
emph.end
type
="
italics
"/>
& deſcribenda ſit Figu
<
lb
/>
ra
<
emph
type
="
italics
"/>
AGK:
<
emph.end
type
="
italics
"/>
produc
<
emph
type
="
italics
"/>
HN
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
X,
<
emph.end
type
="
italics
"/>
ut ſit
<
emph
type
="
italics
"/>
HX
<
emph.end
type
="
italics
"/>
æqualis facto ſub
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+1 &
<
lb
/>
<
emph
type
="
italics
"/>
AI
<
emph.end
type
="
italics
"/>
; centroque
<
emph
type
="
italics
"/>
X
<
emph.end
type
="
italics
"/>
& Aſymptotis
<
emph
type
="
italics
"/>
MX, NX
<
emph.end
type
="
italics
"/>
per punctum
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
deſcriba
<
lb
/>
tur Hyperbola, ea lege, ut ſit
<
emph
type
="
italics
"/>
AI
<
emph.end
type
="
italics
"/>
ad quamvis
<
emph
type
="
italics
"/>
VG
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
XV
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
XI
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Reg.
<
emph.end
type
="
italics
"/>
6. Quo major eſt numerus
<
emph
type
="
italics
"/>
n,
<
emph.end
type
="
italics
"/>
eo magis accuratæ ſunt hæ
<
lb
/>
Hyperbolæ in aſcenſu corporis ab
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
& minus accuratæ in ejus de
<
lb
/>
ſcenſu ad
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
; & contra. </
s
>
<
s
>Hyperbola Conica mediocrem rationem
<
lb
/>
tenet, eſt que cæteris ſimplicior. </
s
>
<
s
>Igitur ſi Hyperbola ſit hujus generis,
<
lb
/>
& punctum
<
emph
type
="
italics
"/>
K,
<
emph.end
type
="
italics
"/>
ubi corpus projectum incidet in rectam quamvis
<
emph
type
="
italics
"/>
AN
<
emph.end
type
="
italics
"/>
<
lb
/>
per punctum
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
tranſeuntem, quæratur: occurrat producta
<
emph
type
="
italics
"/>
AN
<
emph.end
type
="
italics
"/>
<
lb
/>
Aſymptotis
<
emph
type
="
italics
"/>
MX, NX
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
M
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
N,
<
emph.end
type
="
italics
"/>
& ſumatur
<
emph
type
="
italics
"/>
NK
<
emph.end
type
="
italics
"/>
ipſi
<
emph
type
="
italics
"/>
AM
<
emph.end
type
="
italics
"/>
æqualis. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Reg.
<
emph.end
type
="
italics
"/>
7. Et hinc liquet methodus expedita determinandi hanc
<
lb
/>
Hyperbolam ex Phænomenis. </
s
>
<
s
>Projiciantur corpora duo ſimilia &
<
lb
/>
æqualia, eadem velocitate, in angulis diverſis
<
emph
type
="
italics
"/>
HAK, hAk,
<
emph.end
type
="
italics
"/>
inci
<
lb
/>
dantQ.E.I. planum Horizontis in
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
k
<
emph.end
type
="
italics
"/>
; & notetur proportio
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
Ak.
<
emph.end
type
="
italics
"/>
Sit ea
<
emph
type
="
italics
"/>
d
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
e.
<
emph.end
type
="
italics
"/>
Tum erecto cujuſvis longitudinis perpen
<
lb
/>
diculo
<
emph
type
="
italics
"/>
AI,
<
emph.end
type
="
italics
"/>
aſſume utcunque longitudinem
<
emph
type
="
italics
"/>
AH
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
Ah,
<
emph.end
type
="
italics
"/>
& inde
<
lb
/>
collige graphice longitudines
<
emph
type
="
italics
"/>
AK, Ak,
<
emph.end
type
="
italics
"/>
per Reg. </
s
>
<
s
>6. Si ratio
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
Ak
<
emph.end
type
="
italics
"/>
ſit eadem cum ratione
<
emph
type
="
italics
"/>
d
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
e,
<
emph.end
type
="
italics
"/>
longitudo
<
emph
type
="
italics
"/>
AH
<
emph.end
type
="
italics
"/>
recte aſſump
<
lb
/>
ta fuit. </
s
>
<
s
>Sin minus cape in recta infinita
<
emph
type
="
italics
"/>
SM
<
emph.end
type
="
italics
"/>
longitudinem
<
emph
type
="
italics
"/>
SM
<
emph.end
type
="
italics
"/>
<
lb
/>
æqualem aſſumptæ
<
emph
type
="
italics
"/>
AH,
<
emph.end
type
="
italics
"/>
& erige perpendiculum
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
æquale ra
<
lb
/>
tionum differentiæ
<
emph
type
="
italics
"/>
(AK/Ak)-d/e
<
emph.end
type
="
italics
"/>
ductæ in rectam quamvis datam. </
s
>
<
s
>Si
<
lb
/>
mili methodo ex aſſumptis pluribus longitudinibus
<
emph
type
="
italics
"/>
AH
<
emph.end
type
="
italics
"/>
invenien
<
lb
/>
da ſunt plura puncta
<
emph
type
="
italics
"/>
N,
<
emph.end
type
="
italics
"/>
& per omnia a
<
lb
/>
<
figure
id
="
id.039.01.270.1.jpg
"
xlink:href
="
039/01/270/1.jpg
"
number
="
157
"/>
<
lb
/>
genda Curva linea regularis
<
emph
type
="
italics
"/>
NNXN,
<
emph.end
type
="
italics
"/>
ſe
<
lb
/>
cans rectam
<
emph
type
="
italics
"/>
SMMM
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
X.
<
emph.end
type
="
italics
"/>
Aſſumatur
<
lb
/>
demum
<
emph
type
="
italics
"/>
AH
<
emph.end
type
="
italics
"/>
æqualie abſciſſæ
<
emph
type
="
italics
"/>
SX
<
emph.end
type
="
italics
"/>
& inde
<
lb
/>
denuo inveniatur longitudo
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
; & lon
<
lb
/>
gitudines, quæ ſint ad aſſumptam longitu
<
lb
/>
dinem
<
emph
type
="
italics
"/>
AI
<
emph.end
type
="
italics
"/>
& hanc ultimam
<
emph
type
="
italics
"/>
AH
<
emph.end
type
="
italics
"/>
ut longitudo
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
per experi
<
lb
/>
mentum cognita ad ultimo inventam longitudinem
<
emph
type
="
italics
"/>
AK,
<
emph.end
type
="
italics
"/>
erunt veræ
<
lb
/>
illæ longitudines
<
emph
type
="
italics
"/>
AI
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
AH,
<
emph.end
type
="
italics
"/>
quas invenire oportuit. </
s
>
<
s
>Hiſce vero
<
lb
/>
datis dabitur & reſiſtentia Medii in loco
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
quippe quæ ſit ad vim
<
lb
/>
gravitatis ut
<
emph
type
="
italics
"/>
AH
<
emph.end
type
="
italics
"/>
ad 2
<
emph
type
="
italics
"/>
AI.
<
emph.end
type
="
italics
"/>
Augenda eſt autem denſitas. </
s
>
<
s
>Medii per
<
lb
/>
Reg. </
s
>
<
s
>4; & reſiſtentia modo inventa, ſi in eadem ratione augeatur, fiet
<
lb
/>
accuratior. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>