Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
271
272
273
274
275
276
277
278
279
280
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/271.jpg
"
pagenum
="
243
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Reg.
<
emph.end
type
="
italics
"/>
8. Inventis longitudinibus
<
emph
type
="
italics
"/>
AH, HX
<
emph.end
type
="
italics
"/>
; ſi jam deſideretur </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
arrow.to.target
n
="
note219
"/>
poſitio rectæ
<
emph
type
="
italics
"/>
AH,
<
emph.end
type
="
italics
"/>
ſecundum quam Projectile, data illa cum veloci
<
lb
/>
tate emiſſum, incidit in punctum quodvis
<
emph
type
="
italics
"/>
K:
<
emph.end
type
="
italics
"/>
ad puncta
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
<
lb
/>
erigantur rectæ
<
emph
type
="
italics
"/>
AC, KF
<
emph.end
type
="
italics
"/>
horizonti perpendiculares, quarum
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
<
lb
/>
deorſum tendat, & æquetur ipſi
<
emph
type
="
italics
"/>
AI
<
emph.end
type
="
italics
"/>
ſeu 1/2
<
emph
type
="
italics
"/>
HX.
<
emph.end
type
="
italics
"/>
Aſymptotis
<
emph
type
="
italics
"/>
AK,
<
lb
/>
KF
<
emph.end
type
="
italics
"/>
deſcribatur Hyperbola, cujus conjugata tranſeat per punctum
<
lb
/>
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
centroque
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
& intervallo
<
emph
type
="
italics
"/>
AH
<
emph.end
type
="
italics
"/>
deſcribatur Circulus ſecans Hy
<
lb
/>
perbolam illam in puncto
<
emph
type
="
italics
"/>
H;
<
emph.end
type
="
italics
"/>
& Projectile ſecundum rectam
<
emph
type
="
italics
"/>
AH
<
emph.end
type
="
italics
"/>
<
lb
/>
emiſſum incidet in punctum
<
emph
type
="
italics
"/>
K. Q.E.I.
<
emph.end
type
="
italics
"/>
Nam punctum
<
emph
type
="
italics
"/>
H,
<
emph.end
type
="
italics
"/>
ob
<
lb
/>
datam longitudinem
<
emph
type
="
italics
"/>
AH,
<
emph.end
type
="
italics
"/>
locatur alicubi in Circulo deſcripto. </
s
>
<
s
>A
<
lb
/>
gatur
<
emph
type
="
italics
"/>
CH
<
emph.end
type
="
italics
"/>
occurrens ipſis
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
KF,
<
emph.end
type
="
italics
"/>
illi in
<
emph
type
="
italics
"/>
E,
<
emph.end
type
="
italics
"/>
huic in
<
emph
type
="
italics
"/>
F;
<
emph.end
type
="
italics
"/>
& ob
<
lb
/>
<
figure
id
="
id.039.01.271.1.jpg
"
xlink:href
="
039/01/271/1.jpg
"
number
="
158
"/>
<
lb
/>
parallelas
<
emph
type
="
italics
"/>
CH, MX
<
emph.end
type
="
italics
"/>
& æquales
<
emph
type
="
italics
"/>
AC, AI,
<
emph.end
type
="
italics
"/>
erit
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
æqualis
<
emph
type
="
italics
"/>
AM,
<
emph.end
type
="
italics
"/>
<
lb
/>
& propterea etiam æqualis
<
emph
type
="
italics
"/>
KN.
<
emph.end
type
="
italics
"/>
Sed
<
emph
type
="
italics
"/>
CE
<
emph.end
type
="
italics
"/>
eſt ad
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
FH
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
KN,
<
emph.end
type
="
italics
"/>
& propterea
<
emph
type
="
italics
"/>
CE
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
FH
<
emph.end
type
="
italics
"/>
æquantur. </
s
>
<
s
>Incidit ergo punctum
<
lb
/>
<
emph
type
="
italics
"/>
H
<
emph.end
type
="
italics
"/>
in Hyperbolam Aſymptotis
<
emph
type
="
italics
"/>
AK, KF
<
emph.end
type
="
italics
"/>
deſcriptam, cujus conju
<
lb
/>
gata tranſit per punctum
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
atque adeo reperitur in communi in
<
lb
/>
terſectione Hyperbolæ hujus & Circuli deſcripti.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
No
<
lb
/>
tandum eſt autem quod hæc operatio perinde ſe habet, ſive recta
<
lb
/>
<
emph
type
="
italics
"/>
AKN
<
emph.end
type
="
italics
"/>
horizonti parallela ſit, ſive ad horizontem in angulo quo
<
lb
/>
vis inclinata: quodque ex duabus interſectionibus
<
emph
type
="
italics
"/>
H, H
<
emph.end
type
="
italics
"/>
duo pro
<
lb
/>
deunt anguli
<
emph
type
="
italics
"/>
NAH, NAH
<
emph.end
type
="
italics
"/>
; & quod in Praxi mechanica ſufficit </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>