Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
271
(251)
272
(252)
273
(253)
274
(254)
275
(255)
276
(256)
277
(257)
278
(258)
279
(259)
280
(260)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(252)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div602
"
type
="
section
"
level
="
1
"
n
="
350
">
<
p
>
<
s
xml:id
="
echoid-s6286
"
xml:space
="
preserve
">
<
pb
o
="
252
"
file
="
0272
"
n
="
272
"
rhead
="
GEOMETRIÆ
"/>
BOMFH, erunt vt, AN, ad figuram, BDMO, quod oſtendere
<
lb
/>
oportebat. </
s
>
<
s
xml:id
="
echoid-s6287
"
xml:space
="
preserve
">Per hanc autem, & </
s
>
<
s
xml:id
="
echoid-s6288
"
xml:space
="
preserve
">antecedentem Propoſit. </
s
>
<
s
xml:id
="
echoid-s6289
"
xml:space
="
preserve
">vniuerſa-
<
lb
/>
lius oſtenduntur Propoſ. </
s
>
<
s
xml:id
="
echoid-s6290
"
xml:space
="
preserve
">15. </
s
>
<
s
xml:id
="
echoid-s6291
"
xml:space
="
preserve
">16. </
s
>
<
s
xml:id
="
echoid-s6292
"
xml:space
="
preserve
">necnon Corollaria Prop. </
s
>
<
s
xml:id
="
echoid-s6293
"
xml:space
="
preserve
">19. </
s
>
<
s
xml:id
="
echoid-s6294
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s6295
"
xml:space
="
preserve
">20.</
s
>
<
s
xml:id
="
echoid-s6296
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div604
"
type
="
section
"
level
="
1
"
n
="
351
">
<
head
xml:id
="
echoid-head368
"
xml:space
="
preserve
">THEOREMA XXX. PROPOS. XXXI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6297
"
xml:space
="
preserve
">SI parallelogrammum fuerit ellipſi circumſcriptum, ita ta-
<
lb
/>
men, vt eiuſdem latera non tangant ellipſim in extremis
<
lb
/>
punctis axium eiuſdem; </
s
>
<
s
xml:id
="
echoid-s6298
"
xml:space
="
preserve
">portiones coalternè tangentes erunt
<
lb
/>
æquales; </
s
>
<
s
xml:id
="
echoid-s6299
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s6300
"
xml:space
="
preserve
">ſi duabus oppoſitis tangentibus ducantur paral-
<
lb
/>
lelę abſcindentes à reliquis coalternis tangentibus rectas li-
<
lb
/>
neas æquales, ſumptas verſus puncta contactuum; </
s
>
<
s
xml:id
="
echoid-s6301
"
xml:space
="
preserve
">rectangu-
<
lb
/>
lum, quod continetur ſub vnius parallelarum ea parte, quæ
<
lb
/>
manet intra curuam ellipſis, & </
s
>
<
s
xml:id
="
echoid-s6302
"
xml:space
="
preserve
">tangentem ex ea parte, & </
s
>
<
s
xml:id
="
echoid-s6303
"
xml:space
="
preserve
">ſub
<
lb
/>
reliqua illi in directum manente intra ellipſim, erit æquale
<
lb
/>
rectangulo ad coalternam tangentem ſimiliter ſumpto.</
s
>
<
s
xml:id
="
echoid-s6304
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s6305
"
xml:space
="
preserve
">Sit ergo ellipſis, BDMG, cui ſit circumſcriptum parallelogram-
<
lb
/>
mum, AR, ita tamen, vt puncta contactuum non ſint puncta ex-
<
lb
/>
trema axium eiuſdem, tangant autem in punctis, BDMG, & </
s
>
<
s
xml:id
="
echoid-s6306
"
xml:space
="
preserve
">iun-
<
lb
/>
gantur, BM, DG, & </
s
>
<
s
xml:id
="
echoid-s6307
"
xml:space
="
preserve
">quoniam, AC, FR, ſunt tangentes paralle-
<
lb
/>
læ, vt etiam, AF, CR, ideò, BM, GD, per centrum ellipſis tran-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0272-01
"
xlink:href
="
note-0272-01a
"
xml:space
="
preserve
">Elicitur
<
lb
/>
ex 27. 2.
<
lb
/>
Con.</
note
>
ſibunt, ſit earum communis ſectio punctum, S, ergo, S, erit centrum
<
lb
/>
<
figure
xlink:label
="
fig-0272-01
"
xlink:href
="
fig-0272-01a
"
number
="
169
">
<
image
file
="
0272-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0272-01
"/>
</
figure
>
ellipſis, cum, BM, GD, ſint diametri.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s6308
"
xml:space
="
preserve
">Dico ergo portiones laterum parallelo-
<
lb
/>
grammi, AR, coalternè tangentes eſſe
<
lb
/>
æquales. </
s
>
<
s
xml:id
="
echoid-s6309
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s6310
"
xml:space
="
preserve
">AD, ipſi, GR, AB, ipſi, M
<
lb
/>
R, BC, ipſi, FM, &</
s
>
<
s
xml:id
="
echoid-s6311
"
xml:space
="
preserve
">, CG, ipſi, DF; </
s
>
<
s
xml:id
="
echoid-s6312
"
xml:space
="
preserve
">
<
lb
/>
iungantur, BG, DM; </
s
>
<
s
xml:id
="
echoid-s6313
"
xml:space
="
preserve
">in triangulis ergo,
<
lb
/>
BSG, DSM, latus, BS, æquatur late-
<
lb
/>
ri, SM, & </
s
>
<
s
xml:id
="
echoid-s6314
"
xml:space
="
preserve
">latus, GS, lateri, SD, item
<
lb
/>
angulus; </
s
>
<
s
xml:id
="
echoid-s6315
"
xml:space
="
preserve
">BSG, angulo, DSM, ergo ba-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0272-02
"
xlink:href
="
note-0272-02a
"
xml:space
="
preserve
">4. 1. Elem.</
note
>
ſis, BG, æquatur baſi, DM, & </
s
>
<
s
xml:id
="
echoid-s6316
"
xml:space
="
preserve
">angulus,
<
lb
/>
SBG, angulo, SMD, &</
s
>
<
s
xml:id
="
echoid-s6317
"
xml:space
="
preserve
">, SGB, ipſi, S
<
lb
/>
DM, totus autem angulus, CBS, æquatur toti, FMS, ſibi coal-
<
lb
/>
terno, ergo reliquus angulus, CBG, æquatur reliquo angulo, DM
<
lb
/>
F, & </
s
>
<
s
xml:id
="
echoid-s6318
"
xml:space
="
preserve
">ſimiliter probabimus angulum, BGC, æquari angulo, MD
<
lb
/>
F, ergo reliquus, BCG, æquabitur reliquo, DFM, (qui etiam ſunt
<
lb
/>
æquales, quia ſunt anguli oppoſiti parallelogrammi, AR,) & </
s
>
<
s
xml:id
="
echoid-s6319
"
xml:space
="
preserve
">ideò
<
lb
/>
trianguli, BCG, DFM, erunt æquianguli, &</
s
>
<
s
xml:id
="
echoid-s6320
"
xml:space
="
preserve
">, BG, DM, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>