Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
271
(251)
272
(252)
273
(253)
274
(254)
275
(255)
276
(256)
277
(257)
278
(258)
279
(259)
280
(260)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(254)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div604
"
type
="
section
"
level
="
1
"
n
="
351
">
<
pb
o
="
254
"
file
="
0274
"
n
="
274
"
rhead
="
GEOMETRIÆ
"/>
</
div
>
<
div
xml:id
="
echoid-div607
"
type
="
section
"
level
="
1
"
n
="
352
">
<
head
xml:id
="
echoid-head369
"
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s6357
"
xml:space
="
preserve
">_H_Inc patet nedum rectangulum, NOV, æquari rectangulo, IHP,
<
lb
/>
ſed etiam portiones interceptas tangentibus, & </
s
>
<
s
xml:id
="
echoid-s6358
"
xml:space
="
preserve
">curuaellipſis eſſe
<
lb
/>
inter ſe æquales, belut, OV, ipſi, PH.</
s
>
<
s
xml:id
="
echoid-s6359
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div608
"
type
="
section
"
level
="
1
"
n
="
353
">
<
head
xml:id
="
echoid-head370
"
xml:space
="
preserve
">THEOREMA XXXI. PROPOS. XXXII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6360
"
xml:space
="
preserve
">EXpoſita ellipſi, cum parallelogrammo illi circumſcripto
<
lb
/>
Theor. </
s
>
<
s
xml:id
="
echoid-s6361
"
xml:space
="
preserve
">antecedentis, cæteris omiſſis, oſtendemus, re-
<
lb
/>
gula, FR, omnia quadrata parallelogrammi, AR, ad om-
<
lb
/>
nia quadrata ellipſis, BDMG, cum rectangulis bis ſub ea-
<
lb
/>
dem ellipſi, & </
s
>
<
s
xml:id
="
echoid-s6362
"
xml:space
="
preserve
">ſub trilineis, BCG, GRM, eſſe, vt paralle-
<
lb
/>
logrammum, AR, ad ellipſim, BDMG.</
s
>
<
s
xml:id
="
echoid-s6363
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s6364
"
xml:space
="
preserve
">Ducantur à punctis contactuum regulæ, FR, parallelę, GE, D
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0274-01
"
xlink:href
="
note-0274-01a
"
xml:space
="
preserve
">Coroll. 1.
<
lb
/>
26. lib. 2.</
note
>
V; </
s
>
<
s
xml:id
="
echoid-s6365
"
xml:space
="
preserve
">omnia ergo quadrata, AR, ad rectangula ſub ellipſi, BDMG,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s6366
"
xml:space
="
preserve
">ſub, AR, ſunt vt, AR, ad ellipſim, BDMG; </
s
>
<
s
xml:id
="
echoid-s6367
"
xml:space
="
preserve
">verum rectangula
<
lb
/>
ſub ellipſi, BDMG, & </
s
>
<
s
xml:id
="
echoid-s6368
"
xml:space
="
preserve
">ſub, AR, ſunt æqualia rectangulis ſub el-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0274-02
"
xlink:href
="
note-0274-02a
"
xml:space
="
preserve
">A. 23. 1. 2.</
note
>
lipſi, BDMG, & </
s
>
<
s
xml:id
="
echoid-s6369
"
xml:space
="
preserve
">ſub duobus trilineis, BAD, DFM, item ſub el-
<
lb
/>
lipſi, BDMG, & </
s
>
<
s
xml:id
="
echoid-s6370
"
xml:space
="
preserve
">ſub eadem. </
s
>
<
s
xml:id
="
echoid-s6371
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s6372
"
xml:space
="
preserve
">omnibus quadratis ellipſis, BDM
<
lb
/>
G, & </
s
>
<
s
xml:id
="
echoid-s6373
"
xml:space
="
preserve
">ſub eadem ellipſi, BDMG, & </
s
>
<
s
xml:id
="
echoid-s6374
"
xml:space
="
preserve
">ſub duobus trilineis, BCG,
<
lb
/>
GRM, verum rectangula ſub ellipſi, BDMG, & </
s
>
<
s
xml:id
="
echoid-s6375
"
xml:space
="
preserve
">ſub trilineis, B
<
lb
/>
<
figure
xlink:label
="
fig-0274-01
"
xlink:href
="
fig-0274-01a
"
number
="
170
">
<
image
file
="
0274-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0274-01
"/>
</
figure
>
AD, DFM, æquantur rectangulis ſub ea-
<
lb
/>
dem ellipſi, & </
s
>
<
s
xml:id
="
echoid-s6376
"
xml:space
="
preserve
">ſub trilineis, BCG, GRM,
<
lb
/>
quod ſic patet, quoniam enim, AD, RG,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0274-03
"
xlink:href
="
note-0274-03a
"
xml:space
="
preserve
">Exantec.</
note
>
coalternè tangentes ſunt æquales, & </
s
>
<
s
xml:id
="
echoid-s6377
"
xml:space
="
preserve
">ductis
<
lb
/>
ipſi, FR, parallelis intra ellipſim, ex ipſis
<
lb
/>
coalternè tangentibus, AD, RG, abſcin
<
lb
/>
dentibus portiones æquales verſus puncta
<
lb
/>
contactuum, rectangula ſumpta, vt dictum
<
lb
/>
eſt in antecedenti Theor. </
s
>
<
s
xml:id
="
echoid-s6378
"
xml:space
="
preserve
">ſunt æqualia, ideò
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s6379
"
xml:space
="
preserve
">omnia omnibus erunt æqualia. </
s
>
<
s
xml:id
="
echoid-s6380
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s6381
"
xml:space
="
preserve
">rectan-
<
lb
/>
gula ſub portione, OGBD, & </
s
>
<
s
xml:id
="
echoid-s6382
"
xml:space
="
preserve
">trilineo, BAD, erunt æqualia re-
<
lb
/>
ctangulis ſub portione, SMG, & </
s
>
<
s
xml:id
="
echoid-s6383
"
xml:space
="
preserve
">ſub trilineo, GMR, eadem ra-
<
lb
/>
tione rectangula ſub portione, OMD, & </
s
>
<
s
xml:id
="
echoid-s6384
"
xml:space
="
preserve
">trilineo, DFM, æquan-
<
lb
/>
tur rectangulis ſub portione, SBG, & </
s
>
<
s
xml:id
="
echoid-s6385
"
xml:space
="
preserve
">trilineo, BCG, ergo rectan-
<
lb
/>
gula ſub ellipſi, BDMG, & </
s
>
<
s
xml:id
="
echoid-s6386
"
xml:space
="
preserve
">duobus trilineis, BAD, DFM, ęquan-
<
lb
/>
tur rectangulis ſub ellipſi, BDMG, & </
s
>
<
s
xml:id
="
echoid-s6387
"
xml:space
="
preserve
">ſub trilineis, BCG, GRM;</
s
>
<
s
xml:id
="
echoid-s6388
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>