Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
271
(251)
272
(252)
273
(253)
274
(254)
275
(255)
276
(256)
277
(257)
278
(258)
279
(259)
280
(260)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(256)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div611
"
type
="
section
"
level
="
1
"
n
="
355
">
<
p
>
<
s
xml:id
="
echoid-s6412
"
xml:space
="
preserve
">
<
pb
o
="
256
"
file
="
0276
"
n
="
276
"
rhead
="
GEOMETRIÆ
"/>
rectangulis bis ſub eadem, & </
s
>
<
s
xml:id
="
echoid-s6413
"
xml:space
="
preserve
">ſub quadrilineo, BGMXT, erunt vt,
<
lb
/>
AR, ad ellipſim, BDMG. </
s
>
<
s
xml:id
="
echoid-s6414
"
xml:space
="
preserve
">Sic etiam fiet demonſtratio, ſi produ-
<
lb
/>
cantur, FA, RC, ſimiliter ac productę ſunt, AC, FR, quarum al-
<
lb
/>
tera pro regula ſumatur.</
s
>
<
s
xml:id
="
echoid-s6415
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div613
"
type
="
section
"
level
="
1
"
n
="
356
">
<
head
xml:id
="
echoid-head373
"
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s6416
"
xml:space
="
preserve
">_H_Inc patet, ſi, BDMG, non eſſet ellipſis, ſed alia vtcunque figu-
<
lb
/>
ra plana parallelogrammo, AR, inſcripta, dummodo portiones
<
lb
/>
laterum coalternè tangentes eſſent æquales, & </
s
>
<
s
xml:id
="
echoid-s6417
"
xml:space
="
preserve
">rectangula ſumpta ad
<
lb
/>
coalternè tangentes, eo modo, quo dictum eſt in heor. </
s
>
<
s
xml:id
="
echoid-s6418
"
xml:space
="
preserve
">antecedenti, eſ-
<
lb
/>
ſent quoque æqualia, quod omnia quadrata, AR, ad omnia quadrata,
<
lb
/>
talis figuræ, cum rectangulis bis ſub eadem, & </
s
>
<
s
xml:id
="
echoid-s6419
"
xml:space
="
preserve
">ſub trilineis adiacenti-
<
lb
/>
bus lateri, quod non ſumitur pro regula, erunt vt, AR, ad talem figu-
<
lb
/>
ram; </
s
>
<
s
xml:id
="
echoid-s6420
"
xml:space
="
preserve
">V eluti erunt etiam omnia quadrata, AR, cumrectangu
<
unsure
/>
lis bis ſub,
<
lb
/>
AR, RT, ad omnia quadrata talis figuræ, cum rectangulis bis ſub ea-
<
lb
/>
dem, & </
s
>
<
s
xml:id
="
echoid-s6421
"
xml:space
="
preserve
">ſub quadrilineo ſimili ipſi, BGMXT, bæc. </
s
>
<
s
xml:id
="
echoid-s6422
"
xml:space
="
preserve
">n. </
s
>
<
s
xml:id
="
echoid-s6423
"
xml:space
="
preserve
">eodem modo col-
<
lb
/>
ligentur, quo pro ellipſi, BDMG, per demonſtrationem collecta ſunt,
<
lb
/>
aderunt enim eadem principia, ex quibus demonſtratio pro ellipſi pende-
<
lb
/>
bat: </
s
>
<
s
xml:id
="
echoid-s6424
"
xml:space
="
preserve
">Exemplum facile baberi poteſt in figura ex duabus æqualibus cir-
<
lb
/>
culi, vel ellipſis portionibus minoribus compoſita tali pacto, vt baſis v-
<
lb
/>
nius portionis alterius baſi congruat, quæ quidem figura ſit inſoripta di-
<
lb
/>
cto rectangulo, cuiuſque latera eam tangant non in punctis extremis
<
lb
/>
axium, ſed in quatuor alijs vtcunq, vnde, &</
s
>
<
s
xml:id
="
echoid-s6425
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s6426
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div614
"
type
="
section
"
level
="
1
"
n
="
357
">
<
head
xml:id
="
echoid-head374
"
xml:space
="
preserve
">THEOREMA XXXIII. PROPOS. XXXIV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6427
"
xml:space
="
preserve
">QVæcunque ſolida ad inuicem ſimilaria, genita ex figu-
<
lb
/>
ris ſuperius in hoc Libro Tertio conſideratis, iuxta re-
<
lb
/>
gulas ibidem aſſumptas, quarum patefacta eſt ra-
<
lb
/>
tio omnium quadratorum, habent inter ſe rationem notam.</
s
>
<
s
xml:id
="
echoid-s6428
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s6429
"
xml:space
="
preserve
">Quoniam enim alibi oſtenſum eſt, vt omnia quadrata duarum fi-
<
lb
/>
gurarum inter ſe ſumpta cum da
<
unsure
/>
tis regulis, ita eſſe ſoli
<
unsure
/>
da ad inuicem
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0276-01
"
xlink:href
="
note-0276-01a
"
xml:space
="
preserve
">33. Lib. 2.</
note
>
ſimilaria genita ex ijldem ſiguris, iuxta eaſdem regulas, ideò cum in
<
lb
/>
Theorematibus huius Libri inuenta eſt ratio omnium quadratorum
<
lb
/>
duarum quarundam figurarum cum talibus regulis, colligimus etiam
<
lb
/>
nunc eandem eſſe rationem duorum ad inuicem ſimilarium ſolido-
<
lb
/>
rum, quæ ex illis figuris iuxta eaſdem regulas genita dicuntur; </
s
>
<
s
xml:id
="
echoid-s6430
"
xml:space
="
preserve
">Vt
<
lb
/>
exempli gratia in Propoſ. </
s
>
<
s
xml:id
="
echoid-s6431
"
xml:space
="
preserve
">I. </
s
>
<
s
xml:id
="
echoid-s6432
"
xml:space
="
preserve
">conſpectis, iterum eiuſdem figuris, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>