Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
271
272
273
274
275
276
277
278
279
280
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/279.jpg
"
pagenum
="
251
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Caſ.
<
emph.end
type
="
italics
"/>
2. Sin corpus aſcendit, & gravitas ſit ut
<
emph
type
="
italics
"/>
ABq-BDq
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
note227
"/>
linea
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
(Fig. </
s
>
<
s
>Caſ. </
s
>
<
s
>2. Prop. </
s
>
<
s
>XIII) erit (
<
emph
type
="
italics
"/>
ABq-BDq
<
emph.end
type
="
italics
"/>
/Z), &
<
emph
type
="
italics
"/>
DTq
<
emph.end
type
="
italics
"/>
<
lb
/>
erit ad
<
emph
type
="
italics
"/>
DPq
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
DFq
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
DBq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
BPq-BDq
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
APq+
<
lb
/>
2BAP+ABq-BDq,
<
emph.end
type
="
italics
"/>
id eſt, ad
<
emph
type
="
italics
"/>
AK
<
emph.end
type
="
italics
"/>
XZ+
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
XZ ſeu
<
emph
type
="
italics
"/>
CK
<
emph.end
type
="
italics
"/>
XZ. </
s
>
<
s
>
<
lb
/>
Ideoque area
<
emph
type
="
italics
"/>
DTV
<
emph.end
type
="
italics
"/>
erit ad aream
<
emph
type
="
italics
"/>
DPQ
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
DBq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
CK
<
emph.end
type
="
italics
"/>
XZ. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note227
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Caſ.
<
emph.end
type
="
italics
"/>
3. Et eodem argumento, ſi corpus deſcendit, & propterea
<
lb
/>
gravitas ſit ut
<
emph
type
="
italics
"/>
BDq-ABq,
<
emph.end
type
="
italics
"/>
& linea
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
(Fig. </
s
>
<
s
>Caſ.3. Prop. </
s
>
<
s
>præced.)
<
lb
/>
æquetur (
<
emph
type
="
italics
"/>
BDq-ABq
<
emph.end
type
="
italics
"/>
/Z) erit area
<
emph
type
="
italics
"/>
DTV
<
emph.end
type
="
italics
"/>
ad aream
<
emph
type
="
italics
"/>
DPQ
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
DBq
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
CK
<
emph.end
type
="
italics
"/>
XZ: ut ſupra. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Cum igitur areæ illæ ſemper ſint in hac ratione; ſi pro area
<
lb
/>
<
emph
type
="
italics
"/>
DTV,
<
emph.end
type
="
italics
"/>
qua momentum temporis ſibimet ipſi ſemper æquale ex
<
lb
/>
ponitur, ſcribatur determinatum quodvis rectangulum, puta
<
lb
/>
<
emph
type
="
italics
"/>
BDXm,
<
emph.end
type
="
italics
"/>
erit area
<
emph
type
="
italics
"/>
DPQ,
<
emph.end
type
="
italics
"/>
id eſt, 1/2
<
emph
type
="
italics
"/>
BDXPQ
<
emph.end
type
="
italics
"/>
; ad
<
emph
type
="
italics
"/>
BDXm
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
CK
<
emph.end
type
="
italics
"/>
XZ ad
<
emph
type
="
italics
"/>
<
expan
abbr
="
BDq.
">BDque</
expan
>
<
emph.end
type
="
italics
"/>
AtQ.E.I.de fit
<
emph
type
="
italics
"/>
PQXBD cub.
<
emph.end
type
="
italics
"/>
æquale
<
lb
/>
2
<
emph
type
="
italics
"/>
BDXmXCK
<
emph.end
type
="
italics
"/>
XZ, & areæ
<
emph
type
="
italics
"/>
AbNK
<
emph.end
type
="
italics
"/>
momentum
<
emph
type
="
italics
"/>
KLON
<
emph.end
type
="
italics
"/>
ſu
<
lb
/>
perius inventum, fit (
<
emph
type
="
italics
"/>
BPXBDXm/AB
<
emph.end
type
="
italics
"/>
). Auferatur areæ
<
emph
type
="
italics
"/>
DET
<
emph.end
type
="
italics
"/>
mo
<
lb
/>
mentum
<
emph
type
="
italics
"/>
DTV
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
BDXm,
<
emph.end
type
="
italics
"/>
& reſtabit (
<
emph
type
="
italics
"/>
APXBDXm/AB
<
emph.end
type
="
italics
"/>
). Eſt igi
<
lb
/>
tur differentia momentorum, id eſt, momentum differentiæ area
<
lb
/>
rum, æqualis (
<
emph
type
="
italics
"/>
APXBDXm/AB
<
emph.end
type
="
italics
"/>
); & propterea (ob datum (
<
emph
type
="
italics
"/>
BDXm/AB
<
emph.end
type
="
italics
"/>
))
<
lb
/>
ut velocitas
<
emph
type
="
italics
"/>
AP,
<
emph.end
type
="
italics
"/>
id eſt, ut momentum ſpatii quod corpus aſcen
<
lb
/>
dendo vel deſcendendo deſcribit. </
s
>
<
s
>IdeoQ.E.D.fferentia arearum
<
lb
/>
& ſpatium illud, proportionalibus momentis creſcentia vel decre
<
lb
/>
ſcentia & ſimul incipientia vel ſimul evaneſcentia, ſunt proportio
<
lb
/>
nalia.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
Igitur ſi longitudo aliqua V ſumatur in ea ratione ad du
<
lb
/>
plum longitudinis M, quæ oritur applicando aream
<
emph
type
="
italics
"/>
DET
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
BD,
<
emph.end
type
="
italics
"/>
<
lb
/>
quam habet linea
<
emph
type
="
italics
"/>
DA
<
emph.end
type
="
italics
"/>
ad lineam
<
emph
type
="
italics
"/>
DE
<
emph.end
type
="
italics
"/>
; ſpatium quod corpus aſcen
<
lb
/>
ſu vel deſcenſu toto in Medio reſiſtente deſcribit, erit ad ſpatium
<
lb
/>
quod in Medio non reſiſtente eodem tempore deſcribere poſſet,
<
lb
/>
ut arearum illarum differentia ad (
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
XV
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
/4
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
), ideoque ex dato tem
<
lb
/>
pore datur. </
s
>
<
s
>Nam ſpatium in Medio non reſiſtente eſt in dupli
<
lb
/>
cata ratione temporis, ſive ut V
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
, & ob datas
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
AB,
<
emph.end
type
="
italics
"/>
ut </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>