Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
271
271
272
272
273
273
274
274
275
275
276
276
277
277
278
278
279
279
280
280
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/280.jpg" pagenum="252"/>
                    <arrow.to.target n="note228"/>
                  (
                    <emph type="italics"/>
                  BD
                    <emph.end type="italics"/>
                  XV
                    <emph type="sup"/>
                  2
                    <emph.end type="sup"/>
                  /4
                    <emph type="italics"/>
                  AB
                    <emph.end type="italics"/>
                  ). Momentum hujus areæ ſive huic æqualis (
                    <emph type="italics"/>
                  DAqXBD
                    <emph.end type="italics"/>
                  XM
                    <emph type="sup"/>
                  2
                    <emph.end type="sup"/>
                  /
                    <emph type="italics"/>
                  DEqXAB
                    <emph.end type="italics"/>
                  )
                    <lb/>
                  eſt ad momentum differentiæ arearum
                    <emph type="italics"/>
                  DET
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  AbNK,
                    <emph.end type="italics"/>
                  ut
                    <lb/>
                  (
                    <emph type="italics"/>
                  DAqXBD
                    <emph.end type="italics"/>
                  X2MX
                    <emph type="italics"/>
                  m
                    <emph.end type="italics"/>
                  /
                    <emph type="italics"/>
                  DEqXAB
                    <emph.end type="italics"/>
                  ) ad (
                    <emph type="italics"/>
                  APXBDXm/AB
                    <emph.end type="italics"/>
                  ), hoc eſt, ut (
                    <emph type="italics"/>
                  DAqXBD
                    <emph.end type="italics"/>
                  XM/
                    <emph type="italics"/>
                  DEq
                    <emph.end type="italics"/>
                  )
                    <lb/>
                  ad 1/2
                    <emph type="italics"/>
                  BDXAP,
                    <emph.end type="italics"/>
                  ſive ut (
                    <emph type="italics"/>
                  DAq/DEq
                    <emph.end type="italics"/>
                  ) in
                    <emph type="italics"/>
                  DET
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  DAP
                    <emph.end type="italics"/>
                  ; adeoque ubi
                    <lb/>
                  areæ
                    <emph type="italics"/>
                  DET
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  DAP
                    <emph.end type="italics"/>
                  quam minimæ ſunt, in ratione æqualitatis.
                    <lb/>
                  </s>
                  <s>Æqualis igitur eſt area quam minima (
                    <emph type="italics"/>
                  BD
                    <emph.end type="italics"/>
                  XV
                    <emph type="sup"/>
                  2
                    <emph.end type="sup"/>
                  /4
                    <emph type="italics"/>
                  AB
                    <emph.end type="italics"/>
                  ) differentiæ quam
                    <lb/>
                  minimæ arearum
                    <emph type="italics"/>
                  DET
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  AbNK.
                    <emph.end type="italics"/>
                  Unde cum ſpatia in Me­
                    <lb/>
                  dio utroque, in principio deſcenſus vel fine aſcenſus ſimul deſcrip­
                    <lb/>
                  ta accedunt ad æqualitatem, adeoque tunc ſunt ad invicem ut area
                    <lb/>
                  (
                    <emph type="italics"/>
                  BD
                    <emph.end type="italics"/>
                  XV
                    <emph type="sup"/>
                  2
                    <emph.end type="sup"/>
                  /4
                    <emph type="italics"/>
                  AB
                    <emph.end type="italics"/>
                  ) & arearum
                    <emph type="italics"/>
                  DET
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  AbNK
                    <emph.end type="italics"/>
                  differentia; ob eorum ana­
                    <lb/>
                  loga incrementa neceſſe eſt ut in æqualibus quibuſcunque tempo­
                    <lb/>
                  ribus ſint ad invicem ut area illa (
                    <emph type="italics"/>
                  BD
                    <emph.end type="italics"/>
                  XV
                    <emph type="sup"/>
                  2
                    <emph.end type="sup"/>
                  /4
                    <emph type="italics"/>
                  AB
                    <emph.end type="italics"/>
                  ) & arearum
                    <emph type="italics"/>
                  DET
                    <emph.end type="italics"/>
                  &
                    <lb/>
                    <emph type="italics"/>
                  AbNK
                    <emph.end type="italics"/>
                  differentia.
                    <emph type="italics"/>
                    <expan abbr="q.">que</expan>
                  E. D.
                    <emph.end type="italics"/>
                  </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>