Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
271
272
273
274
275
276
277
278
279
280
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/280.jpg
"
pagenum
="
252
"/>
<
arrow.to.target
n
="
note228
"/>
(
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
XV
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
/4
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
). Momentum hujus areæ ſive huic æqualis (
<
emph
type
="
italics
"/>
DAqXBD
<
emph.end
type
="
italics
"/>
XM
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
/
<
emph
type
="
italics
"/>
DEqXAB
<
emph.end
type
="
italics
"/>
)
<
lb
/>
eſt ad momentum differentiæ arearum
<
emph
type
="
italics
"/>
DET
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
AbNK,
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
(
<
emph
type
="
italics
"/>
DAqXBD
<
emph.end
type
="
italics
"/>
X2MX
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
/
<
emph
type
="
italics
"/>
DEqXAB
<
emph.end
type
="
italics
"/>
) ad (
<
emph
type
="
italics
"/>
APXBDXm/AB
<
emph.end
type
="
italics
"/>
), hoc eſt, ut (
<
emph
type
="
italics
"/>
DAqXBD
<
emph.end
type
="
italics
"/>
XM/
<
emph
type
="
italics
"/>
DEq
<
emph.end
type
="
italics
"/>
)
<
lb
/>
ad 1/2
<
emph
type
="
italics
"/>
BDXAP,
<
emph.end
type
="
italics
"/>
ſive ut (
<
emph
type
="
italics
"/>
DAq/DEq
<
emph.end
type
="
italics
"/>
) in
<
emph
type
="
italics
"/>
DET
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
DAP
<
emph.end
type
="
italics
"/>
; adeoque ubi
<
lb
/>
areæ
<
emph
type
="
italics
"/>
DET
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
DAP
<
emph.end
type
="
italics
"/>
quam minimæ ſunt, in ratione æqualitatis.
<
lb
/>
</
s
>
<
s
>Æqualis igitur eſt area quam minima (
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
XV
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
/4
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
) differentiæ quam
<
lb
/>
minimæ arearum
<
emph
type
="
italics
"/>
DET
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
AbNK.
<
emph.end
type
="
italics
"/>
Unde cum ſpatia in Me
<
lb
/>
dio utroque, in principio deſcenſus vel fine aſcenſus ſimul deſcrip
<
lb
/>
ta accedunt ad æqualitatem, adeoque tunc ſunt ad invicem ut area
<
lb
/>
(
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
XV
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
/4
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
) & arearum
<
emph
type
="
italics
"/>
DET
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
AbNK
<
emph.end
type
="
italics
"/>
differentia; ob eorum ana
<
lb
/>
loga incrementa neceſſe eſt ut in æqualibus quibuſcunque tempo
<
lb
/>
ribus ſint ad invicem ut area illa (
<
emph
type
="
italics
"/>
BD
<
emph.end
type
="
italics
"/>
XV
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
/4
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
) & arearum
<
emph
type
="
italics
"/>
DET
<
emph.end
type
="
italics
"/>
&
<
lb
/>
<
emph
type
="
italics
"/>
AbNK
<
emph.end
type
="
italics
"/>
differentia.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>