Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
281
(261)
282
(262)
283
(263)
284
(264)
285
(265)
286
(266)
287
(267)
288
(268)
289
(269)
290
(270)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(261)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div619
"
type
="
section
"
level
="
1
"
n
="
359
">
<
p
>
<
s
xml:id
="
echoid-s6532
"
xml:space
="
preserve
">
<
pb
o
="
261
"
file
="
0281
"
n
="
281
"
rhead
="
LIBER III.
"/>
ea nempè, qua omnes figuræ ſimiles circuli eſſe ſupponuntur, cæte-
<
lb
/>
ras ergo variationes ex his facillimè auidus veritatis indagator pro-
<
lb
/>
prio marte comprehendere poterit, quæ pro huius Theor. </
s
>
<
s
xml:id
="
echoid-s6533
"
xml:space
="
preserve
">declarat.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s6534
"
xml:space
="
preserve
">adieq. </
s
>
<
s
xml:id
="
echoid-s6535
"
xml:space
="
preserve
">quoq; </
s
>
<
s
xml:id
="
echoid-s6536
"
xml:space
="
preserve
">dilucidat. </
s
>
<
s
xml:id
="
echoid-s6537
"
xml:space
="
preserve
">fatis effe reor.</
s
>
<
s
xml:id
="
echoid-s6538
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div621
"
type
="
section
"
level
="
1
"
n
="
360
">
<
head
xml:id
="
echoid-head377
"
xml:space
="
preserve
">COROLLARIVM II.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6539
"
xml:space
="
preserve
">IN Propofitione fecunda, expoſita figura Coroll. </
s
>
<
s
xml:id
="
echoid-s6540
"
xml:space
="
preserve
">antec. </
s
>
<
s
xml:id
="
echoid-s6541
"
xml:space
="
preserve
">confor-
<
lb
/>
miter, patet, quam rationem habeat folidum fimilare genitum
<
lb
/>
ex, DN, ideft cylindricus in bafi figura deſcripta à baſi, PN, cuius
<
lb
/>
latus eſt, HN, ad ſolidum ſibi ſimilare genitum ex portione, VCB
<
lb
/>
FR,. </
s
>
<
s
xml:id
="
echoid-s6542
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s6543
"
xml:space
="
preserve
">(ſi omnes figuræ ſimiles ipſius, DN, ſint circuli diametros
<
lb
/>
in, DN, habentes, & </
s
>
<
s
xml:id
="
echoid-s6544
"
xml:space
="
preserve
">omnes figuræ fimiles portionis, VCBFR,
<
lb
/>
ſint pariter circuli rectè axem, BO, ſecantes, & </
s
>
<
s
xml:id
="
echoid-s6545
"
xml:space
="
preserve
">diametros in eadem
<
lb
/>
portione ſitos habentes, quicirculi ſint genitricibus erecti) cylindrus,
<
lb
/>
DN, ad portionem ſphæræ, velſphæroidis, VCBFR, velſi figu-
<
lb
/>
<
figure
xlink:label
="
fig-0281-01
"
xlink:href
="
fig-0281-01a
"
number
="
173
">
<
image
file
="
0281-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0281-01
"/>
</
figure
>
ræ ſint recti lineę, patetratio, quam
<
lb
/>
habet prifma, DN, ad ſolidum ſibi
<
lb
/>
ſimilare genitum ex portione, VCB
<
lb
/>
FR, circuli, vel ellipſis, BCOF.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s6546
"
xml:space
="
preserve
">Ductis autem rectis, BP, PN, pa-
<
lb
/>
tet ſimiliter ratio, quam habet co-
<
lb
/>
nus, BPN, ad portionem ſphæræ,
<
lb
/>
vel ſphæroidis, VCBFR, fiue py
<
lb
/>
ramis, BPN, ad ſolldum ſimilare
<
lb
/>
genitum ex triangulo, BPN, (in-
<
lb
/>
telligeiemper hęc ſolida inuicem ge-
<
lb
/>
nita iuxta regulas in Theorematibus
<
lb
/>
aſſumptas, ne toties id repetatur)
<
lb
/>
ſiue tandem, quam habet vniuerſa-
<
lb
/>
liter ſolidum ſimilare genitum ex, DN, vel triangulo, BPN, ad ſo-
<
lb
/>
lidum ſibi ſimilare genitum ex portione, VCBFR, & </
s
>
<
s
xml:id
="
echoid-s6547
"
xml:space
="
preserve
">hocſi, BO,
<
lb
/>
ſit axis quod ſi tantum fit diameter eædem rationes colligentur ad
<
lb
/>
modum ſuperioris Theorematis. </
s
>
<
s
xml:id
="
echoid-s6548
"
xml:space
="
preserve
">Eſtergo in figura cylindricus, D
<
lb
/>
N, adportionem ſphæræ, vel ſphæroidis, VCBFR, vel priſma,
<
lb
/>
DN, ad ſolidum ſimilare genitum ex portione, VCBFR, veltan-
<
lb
/>
dem quodlibet ſolidum ſimilare genitum ex, DN, ſiue quilibet cy-
<
lb
/>
lindricus genitus ex, DN, ad ſolidum ſibi ſimilare genitum ex por-
<
lb
/>
tione, VCBFR, vt rectangulum ſub, BA, & </
s
>
<
s
xml:id
="
echoid-s6549
"
xml:space
="
preserve
">tripla, AO, adre-
<
lb
/>
ctangulum ſub, BM, & </
s
>
<
s
xml:id
="
echoid-s6550
"
xml:space
="
preserve
">ſub compofita ex, MO, OA. </
s
>
<
s
xml:id
="
echoid-s6551
"
xml:space
="
preserve
">Solidum ve-
<
lb
/>
rò ſimilare genitum ex triangulo, BPN, ſiue ſit conus, ſiue pyramis,
<
lb
/>
ſiue tantum conicus, ad ſibi ſimilare genitum ex portione, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>