Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
281
281
282
282
283
283
284
284
285
285
286
286
287
287
288
288
289
289
290
290
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/282.jpg" pagenum="254"/>
                    <arrow.to.target n="note230"/>
                  </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note230"/>
                  DE MOTU
                    <lb/>
                  CORPORUM</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  PROPOSITIO XV. THEOREMA XII.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Si Medii denſitas in locis ſingulis ſit reciproce ut diſtantia loeorum
                    <lb/>
                  a centro immobili, ſitque vis centripeta in duplicata ratione den­
                    <lb/>
                  ſitatis: dico quod corpus gyrari potest in Spirali, quæ radios
                    <lb/>
                  omnes a centro illo ductos interſecat in angulo dato.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>Ponantur quæ in ſuperiore Lemmate, & producatur
                    <emph type="italics"/>
                  SQ
                    <emph.end type="italics"/>
                  ad
                    <emph type="italics"/>
                  V,
                    <emph.end type="italics"/>
                    <lb/>
                  ut ſit
                    <emph type="italics"/>
                  SV
                    <emph.end type="italics"/>
                  æqualis
                    <emph type="italics"/>
                  SP.
                    <emph.end type="italics"/>
                  Tempore quovis, in Medio reſiſtente, de­
                    <lb/>
                  ſcribat corpus arcum quam minimum
                    <emph type="italics"/>
                  PQ,
                    <emph.end type="italics"/>
                  & tempore duplo ar­
                    <lb/>
                  cum quam minimum
                    <emph type="italics"/>
                  PR
                    <emph.end type="italics"/>
                  ; & decrementa horum arcuum ex reſi­
                    <lb/>
                  ſtentia oriunda, ſive defe­
                    <lb/>
                    <figure id="id.039.01.282.1.jpg" xlink:href="039/01/282/1.jpg" number="166"/>
                    <lb/>
                  ctus ab arcubus qui in Me­
                    <lb/>
                  dio non reſiſtente iiſdem
                    <lb/>
                  temporibus deſcriberen­
                    <lb/>
                  tur, erunt ad invicem ut
                    <lb/>
                  quadrata temporum in
                    <lb/>
                  quibus generantur: Eſt
                    <lb/>
                  itaQ.E.D.crementum arcus
                    <lb/>
                    <emph type="italics"/>
                  PQ
                    <emph.end type="italics"/>
                  pars quarta decre­
                    <lb/>
                  menti arcus
                    <emph type="italics"/>
                  PR.
                    <emph.end type="italics"/>
                  Unde
                    <lb/>
                  etiam, ſi areæ
                    <emph type="italics"/>
                  PSQ
                    <emph.end type="italics"/>
                  æ­
                    <lb/>
                  qualis capiatur area
                    <emph type="italics"/>
                  QSr,
                    <emph.end type="italics"/>
                    <lb/>
                  erit decrementum arcus
                    <lb/>
                    <emph type="italics"/>
                  PQ
                    <emph.end type="italics"/>
                  æquale dimidio lineolæ
                    <emph type="italics"/>
                  Rr
                    <emph.end type="italics"/>
                  ; adeoque vis reſiſtentiæ & vis cen­
                    <lb/>
                  tripeta ſunt ad invicem ut lineolæ 1/2
                    <emph type="italics"/>
                  Rr
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  TQ
                    <emph.end type="italics"/>
                  quas ſimul generant. </s>
                  <s>
                    <lb/>
                  Quoniam vis centripeta, qua corpus urgetur in
                    <emph type="italics"/>
                  P,
                    <emph.end type="italics"/>
                  eſt reciproce ut
                    <lb/>
                    <emph type="italics"/>
                  SPq,
                    <emph.end type="italics"/>
                  & (per Lem. </s>
                  <s>X. Lib. </s>
                  <s>1,) lineola
                    <emph type="italics"/>
                  TQ,
                    <emph.end type="italics"/>
                  quæ vi illa generatur, eſt
                    <lb/>
                  in ratione compoſita ex ratione hujus vis & ratione duplicata tem­
                    <lb/>
                  poris quo arcus
                    <emph type="italics"/>
                  PQ
                    <emph.end type="italics"/>
                  deſcribitur, (Nam reſiſtentiam in hoc caſu,
                    <lb/>
                  ut infinite minorem quam vis centripeta, negligo) erit
                    <emph type="italics"/>
                  TQXSPq
                    <emph.end type="italics"/>
                    <lb/>
                  id eſt (per Lemma noviſſimum) 1/2
                    <emph type="italics"/>
                  PQqXSP,
                    <emph.end type="italics"/>
                  in ratione duplicata
                    <lb/>
                  temporis, adeoque tempus eſt ut
                    <emph type="italics"/>
                  PQX√SP
                    <emph.end type="italics"/>
                  ; & corporis veloci­
                    <lb/>
                  tas, qua arcus
                    <emph type="italics"/>
                  PQ
                    <emph.end type="italics"/>
                  illo tempore deſcribitur, ut (
                    <emph type="italics"/>
                  PQ/PQX√SP
                    <emph.end type="italics"/>
                  ) ſeu
                    <lb/>
                  (1/√
                    <emph type="italics"/>
                  SP
                    <emph.end type="italics"/>
                  ), hoc eſt, in ſubduplicata ratione ipſius
                    <emph type="italics"/>
                  SP
                    <emph.end type="italics"/>
                  reciproce. </s>
                  <s>Et ſi­
                    <lb/>
                  mili argumento, velocitas qua arcus
                    <emph type="italics"/>
                  QR
                    <emph.end type="italics"/>
                  deſcribitur, eſt in ſub-</s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>