Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
281
282
283
284
285
286
287
288
289
290
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/282.jpg
"
pagenum
="
254
"/>
<
arrow.to.target
n
="
note230
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note230
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XV. THEOREMA XII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Medii denſitas in locis ſingulis ſit reciproce ut diſtantia loeorum
<
lb
/>
a centro immobili, ſitque vis centripeta in duplicata ratione den
<
lb
/>
ſitatis: dico quod corpus gyrari potest in Spirali, quæ radios
<
lb
/>
omnes a centro illo ductos interſecat in angulo dato.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Ponantur quæ in ſuperiore Lemmate, & producatur
<
emph
type
="
italics
"/>
SQ
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
V,
<
emph.end
type
="
italics
"/>
<
lb
/>
ut ſit
<
emph
type
="
italics
"/>
SV
<
emph.end
type
="
italics
"/>
æqualis
<
emph
type
="
italics
"/>
SP.
<
emph.end
type
="
italics
"/>
Tempore quovis, in Medio reſiſtente, de
<
lb
/>
ſcribat corpus arcum quam minimum
<
emph
type
="
italics
"/>
PQ,
<
emph.end
type
="
italics
"/>
& tempore duplo ar
<
lb
/>
cum quam minimum
<
emph
type
="
italics
"/>
PR
<
emph.end
type
="
italics
"/>
; & decrementa horum arcuum ex reſi
<
lb
/>
ſtentia oriunda, ſive defe
<
lb
/>
<
figure
id
="
id.039.01.282.1.jpg
"
xlink:href
="
039/01/282/1.jpg
"
number
="
166
"/>
<
lb
/>
ctus ab arcubus qui in Me
<
lb
/>
dio non reſiſtente iiſdem
<
lb
/>
temporibus deſcriberen
<
lb
/>
tur, erunt ad invicem ut
<
lb
/>
quadrata temporum in
<
lb
/>
quibus generantur: Eſt
<
lb
/>
itaQ.E.D.crementum arcus
<
lb
/>
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
pars quarta decre
<
lb
/>
menti arcus
<
emph
type
="
italics
"/>
PR.
<
emph.end
type
="
italics
"/>
Unde
<
lb
/>
etiam, ſi areæ
<
emph
type
="
italics
"/>
PSQ
<
emph.end
type
="
italics
"/>
æ
<
lb
/>
qualis capiatur area
<
emph
type
="
italics
"/>
QSr,
<
emph.end
type
="
italics
"/>
<
lb
/>
erit decrementum arcus
<
lb
/>
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
æquale dimidio lineolæ
<
emph
type
="
italics
"/>
Rr
<
emph.end
type
="
italics
"/>
; adeoque vis reſiſtentiæ & vis cen
<
lb
/>
tripeta ſunt ad invicem ut lineolæ 1/2
<
emph
type
="
italics
"/>
Rr
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
TQ
<
emph.end
type
="
italics
"/>
quas ſimul generant. </
s
>
<
s
>
<
lb
/>
Quoniam vis centripeta, qua corpus urgetur in
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
eſt reciproce ut
<
lb
/>
<
emph
type
="
italics
"/>
SPq,
<
emph.end
type
="
italics
"/>
& (per Lem. </
s
>
<
s
>X. Lib. </
s
>
<
s
>1,) lineola
<
emph
type
="
italics
"/>
TQ,
<
emph.end
type
="
italics
"/>
quæ vi illa generatur, eſt
<
lb
/>
in ratione compoſita ex ratione hujus vis & ratione duplicata tem
<
lb
/>
poris quo arcus
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
deſcribitur, (Nam reſiſtentiam in hoc caſu,
<
lb
/>
ut infinite minorem quam vis centripeta, negligo) erit
<
emph
type
="
italics
"/>
TQXSPq
<
emph.end
type
="
italics
"/>
<
lb
/>
id eſt (per Lemma noviſſimum) 1/2
<
emph
type
="
italics
"/>
PQqXSP,
<
emph.end
type
="
italics
"/>
in ratione duplicata
<
lb
/>
temporis, adeoque tempus eſt ut
<
emph
type
="
italics
"/>
PQX√SP
<
emph.end
type
="
italics
"/>
; & corporis veloci
<
lb
/>
tas, qua arcus
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
illo tempore deſcribitur, ut (
<
emph
type
="
italics
"/>
PQ/PQX√SP
<
emph.end
type
="
italics
"/>
) ſeu
<
lb
/>
(1/√
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
), hoc eſt, in ſubduplicata ratione ipſius
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
reciproce. </
s
>
<
s
>Et ſi
<
lb
/>
mili argumento, velocitas qua arcus
<
emph
type
="
italics
"/>
QR
<
emph.end
type
="
italics
"/>
deſcribitur, eſt in ſub-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>