Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
281
282
283
284
285
286
287
288
289
290
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/283.jpg
"
pagenum
="
255
"/>
duplicata ratione ipſius
<
emph
type
="
italics
"/>
SQ
<
emph.end
type
="
italics
"/>
reciproce. </
s
>
<
s
>Sunt autem arcus illi
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
note231
"/>
&
<
emph
type
="
italics
"/>
QR
<
emph.end
type
="
italics
"/>
ut velocitates deſcriptrices ad invicem, id eſt, in ſubdupli
<
lb
/>
cata ratione
<
emph
type
="
italics
"/>
SQ
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SP,
<
emph.end
type
="
italics
"/>
ſive ut
<
emph
type
="
italics
"/>
SQ
<
emph.end
type
="
italics
"/>
ad √
<
emph
type
="
italics
"/>
SPXSQ
<
emph.end
type
="
italics
"/>
; & ob æqua
<
lb
/>
les angulos
<
emph
type
="
italics
"/>
SPQ, SQr
<
emph.end
type
="
italics
"/>
& æquales areas
<
emph
type
="
italics
"/>
PSQ, QSr,
<
emph.end
type
="
italics
"/>
eſt ar
<
lb
/>
cus
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ad arcum
<
emph
type
="
italics
"/>
Qr
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
SQ
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SP.
<
emph.end
type
="
italics
"/>
Sumantur proportionalium
<
lb
/>
conſequentium differentiæ, & fiet arcus
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ad arcum
<
emph
type
="
italics
"/>
Rr
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
SQ
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
SP-√SPXSQ,
<
emph.end
type
="
italics
"/>
ſeu 1/2
<
emph
type
="
italics
"/>
VQ
<
emph.end
type
="
italics
"/>
; nam punctis
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Q
<
emph.end
type
="
italics
"/>
coeunti
<
lb
/>
bus, ratio ultima
<
emph
type
="
italics
"/>
SP-√SPXSQ
<
emph.end
type
="
italics
"/>
ad 1/2
<
emph
type
="
italics
"/>
VQ
<
emph.end
type
="
italics
"/>
ſit æqualitatis. </
s
>
<
s
>
<
lb
/>
Quoniam decrementum arcus
<
emph
type
="
italics
"/>
PQ,
<
emph.end
type
="
italics
"/>
ex reſiſtentia oriundum, ſive
<
lb
/>
hujus duplum
<
emph
type
="
italics
"/>
Rr,
<
emph.end
type
="
italics
"/>
eſt ut reſiſtentia & quadratum temporis con
<
lb
/>
junctim; erit reſiſtentia ut (
<
emph
type
="
italics
"/>
Rr/PQqXSP
<
emph.end
type
="
italics
"/>
). Erat autem
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Rr,
<
emph.end
type
="
italics
"/>
<
lb
/>
ut
<
emph
type
="
italics
"/>
SQ
<
emph.end
type
="
italics
"/>
ad 1/2
<
emph
type
="
italics
"/>
VQ,
<
emph.end
type
="
italics
"/>
& inde (
<
emph
type
="
italics
"/>
Rr/PQqXSP
<
emph.end
type
="
italics
"/>
) fit ut (1/2
<
emph
type
="
italics
"/>
VQ/PQXSPXSQ
<
emph.end
type
="
italics
"/>
) ſive
<
lb
/>
ut (1/2
<
emph
type
="
italics
"/>
OS/OPXSPq
<
emph.end
type
="
italics
"/>
). Namque punctis
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Q
<
emph.end
type
="
italics
"/>
coeuntibus,
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
SQ
<
emph.end
type
="
italics
"/>
<
lb
/>
coincidunt, & angulus
<
emph
type
="
italics
"/>
PVQ
<
emph.end
type
="
italics
"/>
fit rectus; & ob ſimilia triangula
<
lb
/>
<
emph
type
="
italics
"/>
PVQ, PSO,
<
emph.end
type
="
italics
"/>
fit
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ad 1/2
<
emph
type
="
italics
"/>
VQ
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
OP
<
emph.end
type
="
italics
"/>
ad 1/2
<
emph
type
="
italics
"/>
OS.
<
emph.end
type
="
italics
"/>
Eſt igitur
<
lb
/>
(
<
emph
type
="
italics
"/>
OS/OPXSPq
<
emph.end
type
="
italics
"/>
) ut reſiſtentia, id eſt, in ratione denſitatis Medii in
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
<
lb
/>
& ratione duplicata velocitatis conjunctim. </
s
>
<
s
>Auferatur duplicata
<
lb
/>
ratio velocitatis, nempe ratio (1/
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
), & manebit Medii denſitas in
<
lb
/>
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
ut (
<
emph
type
="
italics
"/>
OS/OPXSP
<
emph.end
type
="
italics
"/>
). Detur Spiralis, & ob datam rationem
<
emph
type
="
italics
"/>
OS
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
OP,
<
emph.end
type
="
italics
"/>
denſitas Medii in
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
erit ut (1/
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
). In Medio igitur cujus
<
lb
/>
denſitas eſt reciproce ut diſtantia a centro
<
emph
type
="
italics
"/>
SP,
<
emph.end
type
="
italics
"/>
corpus gyrari po
<
lb
/>
teſt in hac Spirali.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note231
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Velocitas in loco quovis
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
ea ſemper eſt quacum cor
<
lb
/>
pus in Medio non reſiſtente gyrari poteſt in Circulo, ad eandem a
<
lb
/>
centro diſtantiam
<
emph
type
="
italics
"/>
SP.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Medii denſitas, ſi datur diſtantia
<
emph
type
="
italics
"/>
SP,
<
emph.end
type
="
italics
"/>
eſt ut (
<
emph
type
="
italics
"/>
OS/OP
<
emph.end
type
="
italics
"/>
), ſin
<
lb
/>
diſtantia illa non datur, ut (
<
emph
type
="
italics
"/>
OS/OPXSP
<
emph.end
type
="
italics
"/>
). Et inde Spiralis ad quam
<
lb
/>
libet Medii denſitatem aptari poteſt. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Vis reſiſtentiæ in loco quovis
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
eſt ad vim centripe-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>