Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
281
282
283
284
285
286
287
288
289
290
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/284.jpg
"
pagenum
="
256
"/>
<
arrow.to.target
n
="
note232
"/>
tam in eodem loco ut 1/2
<
emph
type
="
italics
"/>
OS
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
OP.
<
emph.end
type
="
italics
"/>
Nam vires illæ ſunt ad invi
<
lb
/>
vicem ut 1/4
<
emph
type
="
italics
"/>
Rr
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
TQ
<
emph.end
type
="
italics
"/>
ſive ut (1/4
<
emph
type
="
italics
"/>
VQXPQ/SQ
<
emph.end
type
="
italics
"/>
) & (1/2
<
emph
type
="
italics
"/>
PQq/SP
<
emph.end
type
="
italics
"/>
), hoc eſt, ut 1/2
<
emph
type
="
italics
"/>
VQ
<
emph.end
type
="
italics
"/>
<
lb
/>
&
<
emph
type
="
italics
"/>
PQ,
<
emph.end
type
="
italics
"/>
ſeu 1/2
<
emph
type
="
italics
"/>
OS
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
OP.
<
emph.end
type
="
italics
"/>
Data igitur Spirali datur proportio re
<
lb
/>
ſiſtentiæ ad vim centripetam, & viceverſa ex data illa proportione
<
lb
/>
datur Spiralis. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note232
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
4. Corpus itaque gyrari nequit in hac Spirali, niſi ubi vis
<
lb
/>
reſiſtentiæ minor eſt quam dimidium vis centripetæ. </
s
>
<
s
>Fiat reſiſten
<
lb
/>
tia æqualis dimidio vis centripetæ & Spiralis conveniet cum linea
<
lb
/>
recta
<
emph
type
="
italics
"/>
PS,
<
emph.end
type
="
italics
"/>
inque hac recta corpus deſcendet ad centrum, ea cum
<
lb
/>
velocitate quæ ſit ad velocitatem qua probavimus in ſuperioribus
<
lb
/>
in caſu Parabolæ (Theor. </
s
>
<
s
>X, Lib. </
s
>
<
s
>I,) deſcenſum in Medio non reſi
<
lb
/>
ſtente fieri, in ſubduplicata ratione unitatis ad numerum binarium. </
s
>
<
s
>
<
lb
/>
Et tempora deſcenſus hic erunt reciproce ut velocitates, atque
<
lb
/>
adeo dantur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
5. Et quoniam in æqualibus a centro diſtantiis velocitas
<
lb
/>
eadem eſt in Spirali
<
emph
type
="
italics
"/>
PQR
<
emph.end
type
="
italics
"/>
atQ.E.I. recta
<
emph
type
="
italics
"/>
SP,
<
emph.end
type
="
italics
"/>
& longitudo Spi
<
lb
/>
ralis ad longitudinem rectæ
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
eſt in data ratione, nempe in
<
lb
/>
ratione
<
emph
type
="
italics
"/>
OP
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
OS
<
emph.end
type
="
italics
"/>
; tempus deſcenſus in Spirali erit ad tem
<
lb
/>
pus deſcenſus in recta
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
in eadem illa data ratione, proinde
<
lb
/>
Q.E.D.tur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
6. Si centro
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
intervallis duobus quibuſcunQ.E.D.tis deſcri
<
lb
/>
bantur duo Circuli; & manentibus hiſce Circulis, mutetur utcun
<
lb
/>
que angulus quem Spiralis continet cum radio
<
emph
type
="
italics
"/>
PS:
<
emph.end
type
="
italics
"/>
numerus revo
<
lb
/>
lutionum quas corpus intra Circulorum circumferentias, pergendo
<
lb
/>
in Spirali a circumferentia ad circumferentiam, complere poteſt, eſt
<
lb
/>
ut (
<
emph
type
="
italics
"/>
PS/OS
<
emph.end
type
="
italics
"/>
), ſive ut Tangens anguli illius quem Spiralis continet cum
<
lb
/>
radio
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
; tempus vero revolutionum earundem ut (
<
emph
type
="
italics
"/>
OP/OS
<
emph.end
type
="
italics
"/>
), id eſt, ut
<
lb
/>
Secans anguli ejuſdem, vel etiam reciproce ut Medii denſitas. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
7. Si corpus, in Medio cujus denſitas eſt reciproce ut di
<
lb
/>
ſtantia loeorum a centro, revolutionem in Curva quacunque
<
emph
type
="
italics
"/>
AEB
<
emph.end
type
="
italics
"/>
<
lb
/>
circa centrum illud fecerit, & Radium primum
<
emph
type
="
italics
"/>
AS
<
emph.end
type
="
italics
"/>
in eodem an
<
lb
/>
gulo ſecuerit in
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
quo prius in
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
idque cum velocitate quæ fue
<
lb
/>
rit ad velocitatem ſuam primam in
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
reciproce in ſubduplica
<
lb
/>
ta ratione diſtantiarum a centro (id eſt, ut
<
emph
type
="
italics
"/>
AS
<
emph.end
type
="
italics
"/>
ad mediam pro
<
lb
/>
portionalem inter
<
emph
type
="
italics
"/>
AS
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
BS
<
emph.end
type
="
italics
"/>
) corpus illud perget innume
<
lb
/>
ras conſimiles revolutiones
<
emph
type
="
italics
"/>
BFC, CGD
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>facere, & interſe-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>