Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
281
282
283
284
285
286
287
288
289
290
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/286.jpg
"
pagenum
="
258
"/>
<
arrow.to.target
n
="
note234
"/>
quo Spiralis nova ſecat radium eundem in Medio propoſito: At
<
lb
/>
que etiam ut ſunt eorundem angulorum Tangentes ita eſſe numeros
<
lb
/>
revolutionum omnium inter Circulos eoſdem duos quam proxime. </
s
>
<
s
>
<
lb
/>
Si hæc fiant paſſim inter Circulos binos, continuabitur motus per
<
lb
/>
Circulos omnes. </
s
>
<
s
>Atque hoc pacto haud difficulter imaginari poſſi
<
lb
/>
mus quibus modis ac temporibus corpora in Medio quocunque re
<
lb
/>
gulari gyrari debebunt. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note234
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
9. Et quamvis motus excentrici in Spiralibus ad formam
<
lb
/>
Ovalium accedentibus peragantur; tamen concipiendo Spiralium
<
lb
/>
illarum ſingulas revolutiones iiſdem ab invicem intervallis diſtare,
<
lb
/>
iiſdemque gradibus ad centrum accedere cum Spirali ſuperius de
<
lb
/>
ſcripta, intelligemus etiam quomodo motus corporum in hujuſmo
<
lb
/>
di Spiralibus peragantur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XVI. THEOREMA XIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Medii denſitas in locis ſingulis ſit reciproce ut diſtantia loco
<
lb
/>
rum a centro immobili, ſitque vis centripeta reciproce ut dig
<
lb
/>
nitas quælibet ejuſdem diſtantiæ: dico quod corpus gyrari potest
<
lb
/>
in Spirali quæ radios omnes a centro illo ductos interſecat in
<
lb
/>
angulo dato.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Demonſtratur eadem methodo cum Propoſitione ſuperiore. </
s
>
<
s
>
<
lb
/>
Nam ſi vis centripeta in
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
ſit reciproce ut diſtantiæ
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
dignitas
<
lb
/>
quælibet
<
emph
type
="
italics
"/>
SP
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
italics
"/>
+1
<
emph.end
type
="
sup
"/>
cujus index eſt
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
+1; colligetur ut ſupra,
<
lb
/>
quod tempus quo corpus deſcribit arcum quemvis
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
erit ut
<
lb
/>
<
emph
type
="
italics
"/>
PQXSP
<
emph.end
type
="
italics
"/>
<
emph
type
="
sup
"/>
1/2
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
, & reſiſtentia in
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
ut (
<
emph
type
="
italics
"/>
Rr/PQqXSP
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
), ſive ut (—1-1/2
<
emph
type
="
italics
"/>
nXVQ/PQXSP
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
XSQ
<
emph.end
type
="
italics
"/>
),
<
lb
/>
adeoque ut (—1-1/2
<
emph
type
="
italics
"/>
nXOS/OPXSP
<
emph
type
="
sup
"/>
n+1
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
), hoc eſt, ob datum (—1-1/2
<
emph
type
="
italics
"/>
nXOS/OP
<
emph.end
type
="
italics
"/>
), recipro
<
lb
/>
ce ut
<
emph
type
="
italics
"/>
SP
<
emph
type
="
sup
"/>
n+1
<
emph.end
type
="
sup
"/>
.
<
emph.end
type
="
italics
"/>
Et propterea, cum velocitas ſit reciproce ut
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
<
emph
type
="
sup
"/>
1/2
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
,
<
lb
/>
denſitas in
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
erit reciproce ut
<
emph
type
="
italics
"/>
SP.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Reſiſtentia eſt ad vim centripetam, ut —1-1/2
<
emph
type
="
italics
"/>
nXOS
<
emph.end
type
="
italics
"/>
<
lb
/>
ad
<
emph
type
="
italics
"/>
OP.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Si vis centripeta ſit reciproce ut
<
emph
type
="
italics
"/>
SPcub,
<
emph.end
type
="
italics
"/>
erit 1-1/2
<
emph
type
="
italics
"/>
n=o
<
emph.end
type
="
italics
"/>
;
<
lb
/>
adeoque reſiſtentia & denſitas Medii nulla erit, ut in Propoſitione
<
lb
/>
nona Libri primi. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Si vis centripeta ſit reciproce ut dignitas aliqua radii
<
lb
/>
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
cujus index eſt major numero 3, reſiſtentia affirmativa in nega
<
lb
/>
tivam mutabitur. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>