Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
281
(261)
282
(262)
283
(263)
284
(264)
285
(265)
286
(266)
287
(267)
288
(268)
289
(269)
290
(270)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(267)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div638
"
type
="
section
"
level
="
1
"
n
="
371
">
<
pb
o
="
267
"
file
="
0287
"
n
="
287
"
rhead
="
LIBER III.
"/>
</
div
>
<
div
xml:id
="
echoid-div639
"
type
="
section
"
level
="
1
"
n
="
372
">
<
head
xml:id
="
echoid-head389
"
xml:space
="
preserve
">SECTIO III.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6631
"
xml:space
="
preserve
">ITem colligimus ſolida ſimilaria genita excirculo, & </
s
>
<
s
xml:id
="
echoid-s6632
"
xml:space
="
preserve
">ellipſi, vel
<
lb
/>
ellipſibus, vtcunque iuxta datas regulas .</
s
>
<
s
xml:id
="
echoid-s6633
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s6634
"
xml:space
="
preserve
">ſphæram, & </
s
>
<
s
xml:id
="
echoid-s6635
"
xml:space
="
preserve
">ſphæroi-
<
lb
/>
des, & </
s
>
<
s
xml:id
="
echoid-s6636
"
xml:space
="
preserve
">alia quæcunque ſolida ſimilaria genita ex dictis figuris, ha-
<
lb
/>
bere inter ſe rationem ex eorum axibus, vel diametris coniugatis
<
lb
/>
compoſitam.</
s
>
<
s
xml:id
="
echoid-s6637
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div640
"
type
="
section
"
level
="
1
"
n
="
373
">
<
head
xml:id
="
echoid-head390
"
xml:space
="
preserve
">SECTIO IV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6638
"
xml:space
="
preserve
">ITem colligimus ſolida ſimilaria genita ex circulo, vel ellipſi, vel
<
lb
/>
ellipſibus, quæ habeant axes, vel diametros reciprocè quadratis
<
lb
/>
axium illis coniugatorum relpondentes iuxta quæ genita, intelligan-
<
lb
/>
tur, effe æqualia, dummodo vel vna in vtriſque ſumantur axes, vel
<
lb
/>
vna diametri æqualiter ad inuicem inclinatæ: </
s
>
<
s
xml:id
="
echoid-s6639
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s6640
"
xml:space
="
preserve
">ſi hæc ſint æqualia,
<
lb
/>
illa eſſe reciprocè reſpondentia.</
s
>
<
s
xml:id
="
echoid-s6641
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div641
"
type
="
section
"
level
="
1
"
n
="
374
">
<
head
xml:id
="
echoid-head391
"
xml:space
="
preserve
">SECTIO V.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6642
"
xml:space
="
preserve
">ITem habemus, quod ſphæræ, & </
s
>
<
s
xml:id
="
echoid-s6643
"
xml:space
="
preserve
">ſimilia ſphæroideia, & </
s
>
<
s
xml:id
="
echoid-s6644
"
xml:space
="
preserve
">in vni-
<
lb
/>
uerſum, quod ſolida ſimilaria genita ex circulis, vel ellipſibus ha-
<
lb
/>
bentibus axes, vel diametros in ratione ſecundorum axium, vel dia-
<
lb
/>
metrorum, cum quibus æqualiter ſintinclinati, quod, inquam, ſint
<
lb
/>
in tripla ratione axium, vel diametrorum. </
s
>
<
s
xml:id
="
echoid-s6645
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s6646
"
xml:space
="
preserve
">vt cubi eorundem. </
s
>
<
s
xml:id
="
echoid-s6647
"
xml:space
="
preserve
">Hæc
<
lb
/>
enim demonſtrata de omnibus quadratis parallelogrammorum pro
<
lb
/>
omnibus quadratis circulorum, vel ellipſium, tamquam eorundem
<
lb
/>
partibus proportionalibus (dum illis inſcripta intelliguntur) recipi
<
lb
/>
poſiunt.</
s
>
<
s
xml:id
="
echoid-s6648
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div642
"
type
="
section
"
level
="
1
"
n
="
375
">
<
head
xml:id
="
echoid-head392
"
xml:space
="
preserve
">COROLLARIVM XI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6649
"
xml:space
="
preserve
">IN Prop. </
s
>
<
s
xml:id
="
echoid-s6650
"
xml:space
="
preserve
">13. </
s
>
<
s
xml:id
="
echoid-s6651
"
xml:space
="
preserve
">colligemus ſolidum ſimilare genitum ex, OV, quod
<
lb
/>
poteſt eſſe vel cylindrus, vel prima, ad ſibi ſimilare genitum ex
<
lb
/>
trilineo, DCV, eſſe vt, OV, ad reliquum ſpatium, dempta quarta
<
lb
/>
circuli, vel ellipſis, OCD, cum exceſſu dicti quadrantis ſuper duas
<
lb
/>
tertias, rectanguli, OV, ideſt proximè, vt 21. </
s
>
<
s
xml:id
="
echoid-s6652
"
xml:space
="
preserve
">ad 2. </
s
>
<
s
xml:id
="
echoid-s6653
"
xml:space
="
preserve
">Exponatur de
<
lb
/>
huius Theor. </
s
>
<
s
xml:id
="
echoid-s6654
"
xml:space
="
preserve
">figura tantum rectangulum, OV, cum quarta, OCD,
<
lb
/>
dimiffa, EF, ſi igitur intelligemus, OV, circa, DV, manentem re-
<
lb
/>
uolui, quoad redeat, vnde diſceſſit, defcribetur, ab, OV, cylindrus,
<
lb
/>
OA, ideſt ſolidum ſimilare genitum ex, OV, cuius omnes </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>