Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
291
292
293
294
295
296
297
298
299
300
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/295.jpg
"
pagenum
="
267
"/>
<
arrow.to.target
n
="
note243
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note243
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XXII. THEOREMA XVII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Sit Fluidi cujuſdam denſitas compreſſioni proportionalis, & partes
<
lb
/>
ejus a gravitate quadratis diſtantiarum ſuarum a centro reci
<
lb
/>
proce proportionali deorſum trabantur: dico quod, ſi diſtantiæ
<
lb
/>
ſumantur in progreſſione Muſica, denſitates Fluidi in bis di
<
lb
/>
ſtantiis erunt in progreſſione Geometrica.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Deſignet
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
centrum, &
<
emph
type
="
italics
"/>
SA, SB, SC, SD, SE
<
emph.end
type
="
italics
"/>
diſtantias in pro
<
lb
/>
greſſione Geometrica. </
s
>
<
s
>Erigantur perpendicula
<
emph
type
="
italics
"/>
AH, BI, CK,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>
<
lb
/>
quæ ſint ut Fluidi denſitates in locis
<
emph
type
="
italics
"/>
A, B, C, D, E,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>& ipſius
<
lb
/>
<
figure
id
="
id.039.01.295.1.jpg
"
xlink:href
="
039/01/295/1.jpg
"
number
="
172
"/>
<
lb
/>
gravitates ſpecificæ in iiſdem locis erunt
<
emph
type
="
italics
"/>
(AH/SAq), (BI/SBq), (CK/SCq),
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>Fin
<
lb
/>
ge has gravitates uniformiter continuari, primam ab
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
B,
<
emph.end
type
="
italics
"/>
ſe
<
lb
/>
cundam a
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
tertiam a
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
D,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>Et hæ ductæ in altitu
<
lb
/>
dines
<
emph
type
="
italics
"/>
AB, BC, CD, DE,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>vel, quod perinde eſt, in diſtantias
<
lb
/>
<
emph
type
="
italics
"/>
SA, SB, SC,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>altitudinibus illis proportionales, conficient ex
<
lb
/>
ponentes preſſionum
<
emph
type
="
italics
"/>
(AH/SA), (BI/SB), (CK/SC),
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>Quare cum denſitates
<
lb
/>
ſint ut harum preſſionum ſummæ, differentiæ denſitatum
<
emph
type
="
italics
"/>
AH-BI,
<
lb
/>
BI-CK,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>erunt ut ſummarum differentiæ
<
emph
type
="
italics
"/>
(AH/SA), (BI/SB), (CK/SC),
<
emph.end
type
="
italics
"/>
&c. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>