Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
291
292
293
294
295
296
297
298
299
300
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/298.jpg
"
pagenum
="
270
"/>
<
arrow.to.target
n
="
note246
"/>
tione diſtantiæ. </
s
>
<
s
>Fingatur quod vis comprimens ſit in duplicata
<
lb
/>
ratione denſitatis, & gravitas reciproce in ratione duplicata diſtan
<
lb
/>
tiæ, & denſitas erit reciproce ut diſtantia. </
s
>
<
s
>Caſus omnes percurre
<
lb
/>
re longum eſſet. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note246
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XXIII. THEOREMA XVIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Fluidi ex particulis ſe mutuo fugientibus compoſiti denſitas ſit
<
lb
/>
ut compreſſio, vires centrifugæ particularum ſunt reciproce pro
<
lb
/>
portionales diſtantiis centrorum ſuorum. </
s
>
<
s
>Et vice verſa, par
<
lb
/>
ticulæ viribus quæ ſunt reciproce proportionales diſtantiis cen
<
lb
/>
trorum ſuorum ſe mutuo fugientes componunt Fluidum Elaſti
<
lb
/>
cum, cujus denſitas est compreſſioni proportionalis.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Includi intelligatur Fluidum in ſpatio cubico
<
emph
type
="
italics
"/>
ACE,
<
emph.end
type
="
italics
"/>
dein com
<
lb
/>
preſſione redigi in ſpatium cubicum minus
<
emph
type
="
italics
"/>
ace
<
emph.end
type
="
italics
"/>
; & particularum,
<
lb
/>
ſimilem ſitum inter ſe in utro
<
lb
/>
<
figure
id
="
id.039.01.298.1.jpg
"
xlink:href
="
039/01/298/1.jpg
"
number
="
174
"/>
<
lb
/>
que ſpatio obtinentium, diſtan
<
lb
/>
tiæ erunt ut cuborum latera
<
lb
/>
<
emph
type
="
italics
"/>
AB, ab
<
emph.end
type
="
italics
"/>
; & Medii denſitates
<
lb
/>
reciproce ut ſpatia continentia
<
lb
/>
<
emph
type
="
italics
"/>
AB cub.
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
ab cub.
<
emph.end
type
="
italics
"/>
In latere
<
lb
/>
cubi majoris
<
emph
type
="
italics
"/>
ABCD
<
emph.end
type
="
italics
"/>
capiatur
<
lb
/>
quadratum
<
emph
type
="
italics
"/>
DP
<
emph.end
type
="
italics
"/>
æquale lateri
<
lb
/>
cubi minoris
<
emph
type
="
italics
"/>
db
<
emph.end
type
="
italics
"/>
; & ex Hypo
<
lb
/>
theſi, preſſio qua quadratum
<
emph
type
="
italics
"/>
DP
<
emph.end
type
="
italics
"/>
urget Fluidum incluſum, erit ad
<
lb
/>
preſſionem qua latus illud quadratum
<
emph
type
="
italics
"/>
db
<
emph.end
type
="
italics
"/>
urget Fluidum incluſum
<
lb
/>
ut Medii denſitates ad invicem, hoc eſt, ut
<
emph
type
="
italics
"/>
ab cub.
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
ABcub.
<
emph.end
type
="
italics
"/>
Sed
<
lb
/>
preſſio qua quadratum
<
emph
type
="
italics
"/>
DB
<
emph.end
type
="
italics
"/>
urget Fluidum incluſum, eſt ad preſſi
<
lb
/>
onem qua quadratum
<
emph
type
="
italics
"/>
DP
<
emph.end
type
="
italics
"/>
urget idem Fluidum, ut quadratum
<
emph
type
="
italics
"/>
DB
<
emph.end
type
="
italics
"/>
<
lb
/>
ad quadratum
<
emph
type
="
italics
"/>
DP,
<
emph.end
type
="
italics
"/>
hoc eſt, ut
<
emph
type
="
italics
"/>
AB quad.
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
ab quad.
<
emph.end
type
="
italics
"/>
Ergo, ex
<
lb
/>
æquo, preſſio qua latus
<
emph
type
="
italics
"/>
DB
<
emph.end
type
="
italics
"/>
urget Fluidum, eſt ad preſſionem qua
<
lb
/>
latus
<
emph
type
="
italics
"/>
db
<
emph.end
type
="
italics
"/>
urget Fluidum, ut
<
emph
type
="
italics
"/>
ab
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AB.
<
emph.end
type
="
italics
"/>
Planis
<
emph
type
="
italics
"/>
FGH, fgh,
<
emph.end
type
="
italics
"/>
per
<
lb
/>
media cuborum ductis, diſtinguatur Fluidum in duas partes, & hæ
<
lb
/>
ſe mutuo prement iiſdem viribus, quibus premuntur a planis
<
emph
type
="
italics
"/>
AC, ac,
<
emph.end
type
="
italics
"/>
<
lb
/>
hoc eſt, in proportione
<
emph
type
="
italics
"/>
ab
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AB:
<
emph.end
type
="
italics
"/>
adeoque vires centrifugæ, qui
<
lb
/>
bus hæ preſſiones ſuſtinentur, ſunt in eadem ratione. </
s
>
<
s
>Ob eundem
<
lb
/>
particularum numerum ſimilemque ſitum in utroque cubo, vires
<
lb
/>
quas particulæ omnes ſecundum plana
<
emph
type
="
italics
"/>
FGH, fgh
<
emph.end
type
="
italics
"/>
exercent in om-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>