Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
301
(281)
302
(282)
303
(283)
304
305
(285)
306
(286)
307
(287)
308
(288)
309
(289)
310
(290)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(282)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div683
"
type
="
section
"
level
="
1
"
n
="
399
">
<
pb
o
="
282
"
file
="
0302
"
n
="
302
"
rhead
="
GEOMETRIÆ
"/>
</
div
>
<
div
xml:id
="
echoid-div684
"
type
="
section
"
level
="
1
"
n
="
400
">
<
head
xml:id
="
echoid-head418
"
xml:space
="
preserve
">SECTIO III.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6932
"
xml:space
="
preserve
">VLterius habemus faſcias ſolidas cylindricas genitas exempligr.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s6933
"
xml:space
="
preserve
">ab eodem rectangulo, AR, dum ſit reuolutio ſemel circa, T
<
lb
/>
X, & </
s
>
<
s
xml:id
="
echoid-s6934
"
xml:space
="
preserve
">ſemel circa parallelam, AC, ad anulos latos ellipticos altera
<
lb
/>
parte ſtrictiores genitos in reuolutionibus ab ellipſi, BDMG, ha-
<
lb
/>
bere eandem rationem ſcilicet quam habet, AR, ad ellipſim, BDM
<
lb
/>
G, & </
s
>
<
s
xml:id
="
echoid-s6935
"
xml:space
="
preserve
">ideò inter ſe dictos anulos eſſe, vt dictas faſcias, dictæ autem
<
lb
/>
faſciæ ſolidæ cylindricæ ſunt, vt reſidua, demptis à quadratis ſemi-
<
lb
/>
diametrorum baſium integrorum cylindrorum quadratis ſemidiame-
<
lb
/>
trorum baſium cylindrorum, quas dictæ faſciæ complectuntur, & </
s
>
<
s
xml:id
="
echoid-s6936
"
xml:space
="
preserve
">
<
lb
/>
ideò dicti anuli inter ſe eandem rationem habebunt, quam dicta qua-
<
lb
/>
dratorum reſidua.</
s
>
<
s
xml:id
="
echoid-s6937
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div685
"
type
="
section
"
level
="
1
"
n
="
401
">
<
head
xml:id
="
echoid-head419
"
xml:space
="
preserve
">SECTIO IV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6938
"
xml:space
="
preserve
">IN Corollario huius tandem dicitur, quòd ſi, BDMG, non
<
lb
/>
eſſet ellipſis, tum in Schemate huius, tum Theorematis antece-
<
lb
/>
dentis, ſed alia vtcunque ſigura habens tamen prædictas conditiones
<
lb
/>
ibi appoſitas, quod de eadem dicta quoque de ellipſi, BDMG, ve-
<
lb
/>
riſicarentur, noſque hic colligimus, quod omnia ſupradicta æquè,
<
lb
/>
ac deſolidis genitis ab ellipſi, BDMG, de genitis abipſa figura pa-
<
lb
/>
riter veriſicarentur. </
s
>
<
s
xml:id
="
echoid-s6939
"
xml:space
="
preserve
">Poſſumus autem vocare ſolida deſcripta per
<
lb
/>
reuolutionem factam circa, CR, à ſigura, BDMG. </
s
>
<
s
xml:id
="
echoid-s6940
"
xml:space
="
preserve
">Solida anu-
<
lb
/>
laria ſtricta altera parte latiora: </
s
>
<
s
xml:id
="
echoid-s6941
"
xml:space
="
preserve
">quæ verò ſiunt ab eadem per reuolu-
<
lb
/>
tionem circa, TX. </
s
>
<
s
xml:id
="
echoid-s6942
"
xml:space
="
preserve
">Solida anularia lata altera parte ſtrictiora.</
s
>
<
s
xml:id
="
echoid-s6943
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div686
"
type
="
section
"
level
="
1
"
n
="
402
">
<
head
xml:id
="
echoid-head420
"
xml:space
="
preserve
">SCHOLIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s6944
"
xml:space
="
preserve
">POſſent quidem plura alia circa bæc ſolida conſiderari; </
s
>
<
s
xml:id
="
echoid-s6945
"
xml:space
="
preserve
">bt ſi ſecentur
<
lb
/>
planis parallelis, ad axem, circa quem ſit reuolutio, exiſtentibus
<
lb
/>
rectis, quam inter ſerationem babeant reſecta ſegmenta. </
s
>
<
s
xml:id
="
echoid-s6946
"
xml:space
="
preserve
">Item reſtat
<
lb
/>
contemplandum ſolidum, quod naſceretur ex reuolutione dimidiæ elli-
<
lb
/>
pſis circa non axem, ſed diametrum, vel diametro parallelam; </
s
>
<
s
xml:id
="
echoid-s6947
"
xml:space
="
preserve
">quæ vo-
<
lb
/>
luta circa diametrum ſolidum deſcribit referens ſiguram Pyri; </
s
>
<
s
xml:id
="
echoid-s6948
"
xml:space
="
preserve
">circa,
<
lb
/>
berò parallelam diametro portionem maiorem ab ellipſireſecantem, de-
<
lb
/>
ſcribit quoddam ſolidum latius ex vna parte, quam ex alia, referens ſi-
<
lb
/>
guram Mali paradiſi, vt vulgò dicitur, circa berò parallelam </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>