Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
301
302
303
304
305
306
307
308
309
310
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/303.jpg
"
pagenum
="
275
"/>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note250
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
Igitur motus velociſſimus in Medio reſiſtente non incidit
<
lb
/>
<
arrow.to.target
n
="
note251
"/>
in punctum infimum
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
ſed reperitur in puncto illo
<
emph
type
="
italics
"/>
O,
<
emph.end
type
="
italics
"/>
quo arcus
<
lb
/>
totus deſcriptus
<
emph
type
="
italics
"/>
aB
<
emph.end
type
="
italics
"/>
biſecatur. </
s
>
<
s
>Et corpus ſubinde pergendo ad
<
emph
type
="
italics
"/>
a,
<
emph.end
type
="
italics
"/>
<
lb
/>
iiſdem gradibus retardatur quibus antea accelerabatur in deſcenſu
<
lb
/>
ſuo a
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
O.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note251
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XXVI. THEOREMA XXI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corporum Funependulorum, quibus reſiſtitur in ratione velocitatum,
<
lb
/>
oſcillationes in Cycloide ſunt Iſochronæ.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam ſi corpora duo, a centris ſuſpenſionum æqualiter diſtantia,
<
lb
/>
oſcillando deſcribant arcus inæquales, & velocitates in arcuum par
<
lb
/>
tibus correſpondentibus ſint ad invicem ut arcus toti: reſiſtentiæ
<
lb
/>
velocitatibus proportionales, erunt etiam ad invicem ut iidem ar
<
lb
/>
cus. </
s
>
<
s
>Proinde ſi viribus motricibus a gravitate oriundis, quæ ſint
<
lb
/>
ut iidem arcus, auferantur vel addantur hæ reſiſtentiæ, erunt dif
<
lb
/>
ferentiæ vel ſummæ ad invicem in eadem arcuum ratione: cumque
<
lb
/>
velocitatum incrementa vel decrementa ſint ut hæ differentiæ vel
<
lb
/>
ſummæ, velocitates ſemper erunt ut arcus toti: Igitur velocitates,
<
lb
/>
ſi ſint in aliquo caſu ut arcus toti, manebunt ſemper in eadem ra
<
lb
/>
tione. </
s
>
<
s
>Sed in principio motus, ubi corpora incipiunt deſcendere
<
lb
/>
& arcus illos deſcribere, vires, cum ſint arcubus proportionales, ge
<
lb
/>
nerabunt velocitates arcubus proportionales. </
s
>
<
s
>Ergo velocitates ſem
<
lb
/>
per erunt ut arcus toti deſcribendi, & propterea arcus illi ſimul de
<
lb
/>
ſcribentur.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XXVII. THEOREMA XXII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Corporibus Funependulis reſiſtitur in duplicata ratione veloci
<
lb
/>
tatum, differentiæ inter tempora oſcillationum in Medio reſi
<
lb
/>
ſtente ac tempora oſcillationum in ejuſdem gravitatis ſpecificæ
<
lb
/>
Medio non reſiſtente, erunt arcubus oſcillando deſcriptis pro
<
lb
/>
portionales, quam proxime.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam pendulis æqualibus in Medio reſiſtente deſcribantur arcus
<
lb
/>
inæquales A, B; & reſiſtentia corporis in arcu A, erit ad reſiſten
<
lb
/>
tiam corporis in parte correſpondente arcus B, in duplicata ratio
<
lb
/>
ne velocitatum, id eſt, ut AA ad BB, quam proxime. </
s
>
<
s
>Si reſi-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>