Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
301
302
303
304
305
306
307
308
309
310
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/307.jpg
"
pagenum
="
279
"/>
dicatur Y, atque areæ
<
emph
type
="
italics
"/>
PIGR
<
emph.end
type
="
italics
"/>
decrementum
<
emph
type
="
italics
"/>
RGgr
<
emph.end
type
="
italics
"/>
detur, erit
<
lb
/>
<
arrow.to.target
n
="
note255
"/>
incrementum areæ Y ut
<
emph
type
="
italics
"/>
PIGR
<
emph.end
type
="
italics
"/>
-Y. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note255
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Quod ſi V deſignet vim a gravitate oriundam, arcui deſcribendo
<
lb
/>
<
emph
type
="
italics
"/>
CD
<
emph.end
type
="
italics
"/>
proportionalem, qua corpus urgetur in
<
emph
type
="
italics
"/>
D:
<
emph.end
type
="
italics
"/>
& R pro reſiſten
<
lb
/>
tia ponatur: erit V-R vis tota qua corpus urgetur in
<
emph
type
="
italics
"/>
D.
<
emph.end
type
="
italics
"/>
Eſt
<
lb
/>
itaQ.E.I.crementum velocitatis ut V-R & particula illa temporis
<
lb
/>
in qua factum eſt conjunctim: Sed & velocitas ipſa eſt ut incre
<
lb
/>
mentum contemporaneum ſpatii deſcripti directe & particula ea
<
lb
/>
dem temporis inverſe. </
s
>
<
s
>Unde, cum reſiſtentia (per Hypotheſin)
<
lb
/>
ſit ut quadratum velocitatis, incrementum reſiſtentiæ (per Lem. </
s
>
<
s
>II)
<
lb
/>
erit ut velocitas & incrementum velocitatis conjunctim, id eſt, ut
<
lb
/>
momentum ſpatii & V-R conjunctim; atque adeo, ſi momen
<
lb
/>
tum ſpatii detur, ut V-R; id eſt, ſi pro vi V ſeribatur ejus ex
<
lb
/>
ponens
<
emph
type
="
italics
"/>
PIGR,
<
emph.end
type
="
italics
"/>
& reſiſtentia R exponatur per aliam aliquam are
<
lb
/>
am Z, ut
<
emph
type
="
italics
"/>
PIGR
<
emph.end
type
="
italics
"/>
-Z. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Igitur area
<
emph
type
="
italics
"/>
PIGR
<
emph.end
type
="
italics
"/>
per datorum momentorum ſubductionem
<
lb
/>
uniformiter decreſcente, creſcunt area Y in ratione
<
emph
type
="
italics
"/>
PIGR
<
emph.end
type
="
italics
"/>
-Y,
<
lb
/>
& area Z in ratione
<
emph
type
="
italics
"/>
PIGR
<
emph.end
type
="
italics
"/>
-Z. </
s
>
<
s
>Et propterea ſi areæ Y & Z ſi
<
lb
/>
mul incipiant & ſub initio æquales ſint, hæ per additionem æqua
<
lb
/>
lium momentorum pergent eſſe æquales, & æqualibus itidem mo
<
lb
/>
mentis ſubinde decreſcentes ſimul evaneſcent. </
s
>
<
s
>Et viciſſim, ſi ſimul
<
lb
/>
incipiunt & ſimul evaneſcunt, æqualia habebunt momenta & ſem
<
lb
/>
per erunt æquales: id adeo quia ſi reſiſtentia Z augeatur, veloci
<
lb
/>
tas una cum arcu illo
<
emph
type
="
italics
"/>
Ca,
<
emph.end
type
="
italics
"/>
qui in aſcenſu corporis deſcribitur, dimi
<
lb
/>
nuetur; & puncto in quo motus omnis una cum reſiſtentia ceſſat
<
lb
/>
propius accedente ad punctum
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
reſiſtentia citius evaneſcet quam
<
lb
/>
area Y. </
s
>
<
s
>Et contrarium eveniet ubi reſiſtentia diminuitur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Jam vero area Z incipit deſinitque ubi reſiſtentia nulla eſt, hoc
<
lb
/>
eſt, in principio & fine motus, ubi arcus
<
emph
type
="
italics
"/>
CD, CD
<
emph.end
type
="
italics
"/>
arcubus
<
emph
type
="
italics
"/>
CB
<
emph.end
type
="
italics
"/>
&
<
lb
/>
<
emph
type
="
italics
"/>
Ca
<
emph.end
type
="
italics
"/>
æquantur, adeoque ubi recta
<
emph
type
="
italics
"/>
RG
<
emph.end
type
="
italics
"/>
incidit in rectas
<
emph
type
="
italics
"/>
QE
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
CT.
<
emph.end
type
="
italics
"/>
<
lb
/>
Et area Y ſeu
<
emph
type
="
italics
"/>
(OR/OQ)IEF-IGH
<
emph.end
type
="
italics
"/>
incipit deſinitque ubi nulla eſt, ad
<
lb
/>
eoque ubi
<
emph
type
="
italics
"/>
(OR/OQ)IEF
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
IGH
<
emph.end
type
="
italics
"/>
æqualia ſunt: hoc eſt (per con
<
lb
/>
ſtructionem) ubi recta
<
emph
type
="
italics
"/>
RG
<
emph.end
type
="
italics
"/>
incidit in rectas
<
emph
type
="
italics
"/>
QE
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
CT.
<
emph.end
type
="
italics
"/>
Proin
<
lb
/>
deque areæ illæ ſimul incipiunt & ſimul evaneſcunt, & propterea
<
lb
/>
ſemper ſunt æquales. </
s
>
<
s
>Igitur area
<
emph
type
="
italics
"/>
(OR/OQ)IEF-IGH
<
emph.end
type
="
italics
"/>
æqualis eſt
<
lb
/>
areæ Z, per quam reſiſtentia exponitur, & propterea eſt ad aream
<
lb
/>
<
emph
type
="
italics
"/>
PINM
<
emph.end
type
="
italics
"/>
per quam gravitas exponitur, ut reſiſtentia ad gravita
<
lb
/>
tem.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>