Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
311
(291)
312
(292)
313
(293)
314
(294)
315
(295)
316
(296)
317
(297)
318
(298)
319
(299)
320
(300)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(292)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div699
"
type
="
section
"
level
="
1
"
n
="
411
">
<
p
>
<
s
xml:id
="
echoid-s7094
"
xml:space
="
preserve
">
<
pb
o
="
292
"
file
="
0312
"
n
="
312
"
rhead
="
GEOMETRIÆ
"/>
quadrata, HN, ad omnia quadrata ſemiportionis, HMNC, vt
<
lb
/>
patet in eiuſdem Lib. </
s
>
<
s
xml:id
="
echoid-s7095
"
xml:space
="
preserve
">Propoſ. </
s
>
<
s
xml:id
="
echoid-s7096
"
xml:space
="
preserve
">I.</
s
>
<
s
xml:id
="
echoid-s7097
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7098
"
xml:space
="
preserve
">Quod ſi velimus comparare parallelogramma, quæ ſunt in baſi-
<
lb
/>
bus æqualibus axi, vel diametro, inueniemus infraſcriptas rationes
<
lb
/>
ſcilicet parallelogrammum, BT, ad portionem, HST, eſſe vt re-
<
lb
/>
ctangulum ſub, HO, & </
s
>
<
s
xml:id
="
echoid-s7099
"
xml:space
="
preserve
">tripla, OA, ad rectangulum ſub, HT, & </
s
>
<
s
xml:id
="
echoid-s7100
"
xml:space
="
preserve
">
<
lb
/>
ſub compoſita ex, TA, &</
s
>
<
s
xml:id
="
echoid-s7101
"
xml:space
="
preserve
">, AO, ſicuti ſunt omnia quadrata, HZ,
<
lb
/>
ad omnia quadrata ſemiportionis, HTV. </
s
>
<
s
xml:id
="
echoid-s7102
"
xml:space
="
preserve
">Eadem ratione, BC, ad
<
lb
/>
<
figure
xlink:label
="
fig-0312-01
"
xlink:href
="
fig-0312-01a
"
number
="
206
">
<
image
file
="
0312-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0312-01
"/>
</
figure
>
portionem, HGE
<
lb
/>
C, erit vt rectangu-
<
lb
/>
lum ſub, HO, & </
s
>
<
s
xml:id
="
echoid-s7103
"
xml:space
="
preserve
">
<
lb
/>
tripla, OA, ad re-
<
lb
/>
ctangulum ſub, H
<
lb
/>
C, & </
s
>
<
s
xml:id
="
echoid-s7104
"
xml:space
="
preserve
">ſub compoſi-
<
lb
/>
ta ex, CA, &</
s
>
<
s
xml:id
="
echoid-s7105
"
xml:space
="
preserve
">, AO,
<
lb
/>
ſic enim ſunt om-
<
lb
/>
nia quadrata, HI,
<
lb
/>
ad omnia quadrata
<
lb
/>
ſemiportionis, HM
<
lb
/>
NC, vt patet in eo-
<
lb
/>
dem Lib. </
s
>
<
s
xml:id
="
echoid-s7106
"
xml:space
="
preserve
">3. </
s
>
<
s
xml:id
="
echoid-s7107
"
xml:space
="
preserve
">Prop. </
s
>
<
s
xml:id
="
echoid-s7108
"
xml:space
="
preserve
">2.</
s
>
<
s
xml:id
="
echoid-s7109
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7110
"
xml:space
="
preserve
">Sitandem ſuma-
<
lb
/>
musparallelogram-
<
lb
/>
mum, PC, cui in-
<
lb
/>
ſcripta eſt parabolę
<
lb
/>
portio, TSGEC,
<
lb
/>
incluſa duabus, ST,
<
lb
/>
EC, ad baſim, HA, vtcunq; </
s
>
<
s
xml:id
="
echoid-s7111
"
xml:space
="
preserve
">ordinatim applicatis, ſiue intercipiant
<
lb
/>
axem, vel diametrum, GO, ſiue non, ſiue axis, vel diameter, GO,
<
lb
/>
ſit altera harum duarum ad baſim, HA, ordinatim applicatarum,
<
lb
/>
ſiue non; </
s
>
<
s
xml:id
="
echoid-s7112
"
xml:space
="
preserve
">reperiemus parallelogrammum, PC, ad portionem, TS
<
lb
/>
GEC, eſſe vt rectangulum, HOA, ad rectangulum ſub, AC, & </
s
>
<
s
xml:id
="
echoid-s7113
"
xml:space
="
preserve
">
<
lb
/>
ſub compoſita ex, {1/2}, CT, & </
s
>
<
s
xml:id
="
echoid-s7114
"
xml:space
="
preserve
">tota, TH, vna cum rectangulo ſub, T
<
lb
/>
C, & </
s
>
<
s
xml:id
="
echoid-s7115
"
xml:space
="
preserve
">ſub compoſita ex, {1/6}, TC, &</
s
>
<
s
xml:id
="
echoid-s7116
"
xml:space
="
preserve
">, {1/2}, TH, ſic enim eſſe inuenie-
<
lb
/>
mus omnia quadrata, TI, ad omnia quadrata quadrilinei, TVM
<
lb
/>
NC, vt patet eodem Lib. </
s
>
<
s
xml:id
="
echoid-s7117
"
xml:space
="
preserve
">Propoſ. </
s
>
<
s
xml:id
="
echoid-s7118
"
xml:space
="
preserve
">4.</
s
>
<
s
xml:id
="
echoid-s7119
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div702
"
type
="
section
"
level
="
1
"
n
="
412
">
<
head
xml:id
="
echoid-head432
"
xml:space
="
preserve
">COROLLARIV M.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s7120
"
xml:space
="
preserve
">_H_Inc habetur ſi fiant triangulæ, ductis, SH, PH, GH, QT, hæc
<
lb
/>
ad portiones, quibus inſcribuntur habere eaſdem rationes, quas
<
lb
/>
habent dimidia antecedentium ad eadem conſequentia ſuperius expoſita,
<
lb
/>
ſunt enim & </
s
>
<
s
xml:id
="
echoid-s7121
"
xml:space
="
preserve
">ipſa triangula dictorum parallelogrammorum dimedia.</
s
>
<
s
xml:id
="
echoid-s7122
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>