Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
311
(291)
312
(292)
313
(293)
314
(294)
315
(295)
316
(296)
317
(297)
318
(298)
319
(299)
320
(300)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(293)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div702
"
type
="
section
"
level
="
1
"
n
="
412
">
<
pb
o
="
293
"
file
="
0313
"
n
="
313
"
rhead
="
LIBER IV.
"/>
</
div
>
<
div
xml:id
="
echoid-div703
"
type
="
section
"
level
="
1
"
n
="
413
">
<
head
xml:id
="
echoid-head433
"
xml:space
="
preserve
">THEOREMA VI. PROPOS. VI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s7123
"
xml:space
="
preserve
">SI ad baſim datæ parabolæ ordinatim applicetur recta li-
<
lb
/>
nea, tota parabola ad abſciſſam portionem per ipſam or-
<
lb
/>
dinatim applicatam erit, vt parallelepipedum ſub altitudine
<
lb
/>
dimidia baſi, ſub baſi autem quadrato totius baſis, ad paral-
<
lb
/>
lelepipedum ſub altitudine linea compoſita ex dimidia baſi,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s7124
"
xml:space
="
preserve
">reliquo baſis, dempta abſciſſa ab eadem extremitate ba-
<
lb
/>
ſis, à qua portio parabolæ abſcinditur, & </
s
>
<
s
xml:id
="
echoid-s7125
"
xml:space
="
preserve
">ſub baſi quadrato
<
lb
/>
eiuſdem abſciſſæ per dictam ordinatim applicatam: </
s
>
<
s
xml:id
="
echoid-s7126
"
xml:space
="
preserve
">Vel erit,
<
lb
/>
vt cubus totius baſis ad parallelepipedum ſub baſi quadrato
<
lb
/>
abſciſſæ, altitudine tripla reliquæ, cum cubo dictæ abſciſſæ.</
s
>
<
s
xml:id
="
echoid-s7127
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7128
"
xml:space
="
preserve
">Sit parabola, HG
<
lb
/>
<
figure
xlink:label
="
fig-0313-01
"
xlink:href
="
fig-0313-01a
"
number
="
207
">
<
image
file
="
0313-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0313-01
"/>
</
figure
>
A, cuius baſis, HA,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s7129
"
xml:space
="
preserve
">axis, vel diameter,
<
lb
/>
GO; </
s
>
<
s
xml:id
="
echoid-s7130
"
xml:space
="
preserve
">ducatur deinde
<
lb
/>
ipſi, GO, vtcunque
<
lb
/>
parallela, ST. </
s
>
<
s
xml:id
="
echoid-s7131
"
xml:space
="
preserve
">Dico
<
lb
/>
parabolam, AGH,
<
lb
/>
ad vtramuis portio-
<
lb
/>
num, SHT, TSG
<
lb
/>
A, vt ad, SHT, eſſe
<
lb
/>
vt parallelepip. </
s
>
<
s
xml:id
="
echoid-s7132
"
xml:space
="
preserve
">ſub al-
<
lb
/>
titudine dimidia, H
<
lb
/>
A, quæ ſit, AX, illi
<
lb
/>
in directum conſtitu-
<
lb
/>
ta, baſi quadrato, A
<
lb
/>
H, ad parallelepipe-
<
lb
/>
dum ſub altitudine, X
<
lb
/>
T, baſi quadrato, T
<
lb
/>
H. </
s
>
<
s
xml:id
="
echoid-s7133
"
xml:space
="
preserve
">Producatur, GO,
<
lb
/>
in, M, & </
s
>
<
s
xml:id
="
echoid-s7134
"
xml:space
="
preserve
">circa ſemia-
<
lb
/>
xes, vel ſemidiame-
<
lb
/>
tros, HO, OM, in-
<
lb
/>
telligatur deſcriptus
<
lb
/>
ſemicirculus, vel ſe-
<
lb
/>
miellipſis, HMA,
<
lb
/>
deinde per puncta, G, M, ducantur ipſi, HA, parallelæ, B ℟, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>