Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
311
312
313
314
315
316
317
318
319
320
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/314.jpg
"
pagenum
="
286
"/>
<
arrow.to.target
n
="
note262
"/>
& centrum Globi eſſet 126 digitorum, arcus quem centrum Globi
<
lb
/>
deſcripſit erat (124 1/31) digitorum. </
s
>
<
s
>Quoniam corporis oſcillantis ve
<
lb
/>
locitas maxima, ob reſiſtentiam Aeris, non incidit in punctum infi
<
lb
/>
mum arcus deſcripti, ſed in medio fere loco arcus totius verſatur:
<
lb
/>
hæc eadem erit circiter ac ſi Globus deſcenſu ſuo toto in Medio
<
lb
/>
non reſiſtente deſcriberet arcus illius partem dimidiam digitorum
<
lb
/>
(62 1/62), idQ.E.I. Cycloide, ad quam motum Penduli ſupra reduxi
<
lb
/>
mus: & propterea velocitas illa æqualis erit velocitati quam Glo
<
lb
/>
bus, perpendiculariter cadendo & caſu ſuo deſcribendo altitudinem
<
lb
/>
arcus illius ſinui verſo æqualem, acquirere poſſet. </
s
>
<
s
>Eſt autem ſinus
<
lb
/>
ille verſus in Cycloide ad arcum iſtum (62 1/62) ut arcus idem ad pen
<
lb
/>
duli longitudinem duplam 252, & propterea æqualis digitis 15,278.
<
lb
/>
Quare velocitas ea ipſa eſt quam corpus cadendo & caſu ſuo ſpa
<
lb
/>
tium 15,278 digitorum deſcribendo acquirere poſſet. </
s
>
<
s
>Tali igitur
<
lb
/>
cum velocitate Globus reſiſtentiam patitur, quæ ſit ad ejus pondus
<
lb
/>
ut 0,61675 ad 121, vel (ſi reſiſtentiæ pars illa ſola ſpectetur quæ
<
lb
/>
eſt in velocitatis ratione duplicata) ut 0,56752 ad 121. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note262
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Experimento autem Hydroſtatico inveni quod pondus Globi hu
<
lb
/>
jus lignei eſſet ad pondus Globi aquei magnitudinis ejuſdem, ut 55
<
lb
/>
ad 97: & propterea cum 121 ſit ad 213,4 in eadem ratione, erit
<
lb
/>
reſiſtentia Globi aquei præfata cum velocitate progredientis ad ip
<
lb
/>
ſius pondus, ut 0,56752 ad 213,4 id eſt, ut 1 ad (376 1/50). Unde cum
<
lb
/>
pondus Globi aquei, quo tempore Globus cum velocitate unifor
<
lb
/>
miter continuata deſcribat longitudinem digitorum 30,556, veloci
<
lb
/>
tatem illam omnem in Globo cadente generare poſſet; manifeſtum
<
lb
/>
eſt quod vis reſiſtentiæ eodem tempore uniformiter continuata tol
<
lb
/>
lere poſſet velocitatem minorem in ratione 1 ad (376 1/50), hoc eſt, ve
<
lb
/>
locitatis totius partem (1/(376 1/50)). Et propterea quo tempore Globus,
<
lb
/>
ea cum velocitate uniformiter continuata, longitudinem ſemidiame
<
lb
/>
tri ſuæ, ſeu digitorum (3 7/16), deſcribere poſſet, eodem amitteret mo
<
lb
/>
tus ſui partem (1/3342). </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Numerabam etiam oſcillationes quibus Pendulum quartam mo
<
lb
/>
tus ſui partem amiſit. </
s
>
<
s
>In ſequente Tabula numeri ſupremi deno
<
lb
/>
tant longitudinem arcus deſcenſu primo deſcripti, in digitis & par
<
lb
/>
tibus digiti expreſſam: numeri medii ſignificant longitudinem ar
<
lb
/>
cus aſcenſu ultimo deſcripti; & loco infimo ſtant numeri oſcilla
<
lb
/>
tionum. </
s
>
<
s
>Experimentum deſcripſi tanquam magis accuratum quam
<
lb
/>
cum motus pars tantum octava amitteretur. </
s
>
<
s
>Calculum tentet qui
<
lb
/>
volet. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>