Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
321
(301)
322
(302)
323
(303)
324
(304)
325
(305)
326
(306)
327
(307)
328
(308)
329
(309)
330
(310)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(301)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div718
"
type
="
section
"
level
="
1
"
n
="
423
">
<
pb
o
="
301
"
file
="
0321
"
n
="
321
"
rhead
="
LIBER IV.
"/>
</
div
>
<
div
xml:id
="
echoid-div720
"
type
="
section
"
level
="
1
"
n
="
424
">
<
head
xml:id
="
echoid-head444
"
xml:space
="
preserve
">THEOREMA XII. PROPOS. XIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s7277
"
xml:space
="
preserve
">SIab extremo puncto baſis datæ parabolæ ducatur vſq; </
s
>
<
s
xml:id
="
echoid-s7278
"
xml:space
="
preserve
">ad
<
lb
/>
curuam parabolæ ſupra, vel infra baſim (indefinitè
<
lb
/>
producta ipſa curua) recta linea: </
s
>
<
s
xml:id
="
echoid-s7279
"
xml:space
="
preserve
">Data parabola ad ſegmen-
<
lb
/>
ta ſub ductis lineis, & </
s
>
<
s
xml:id
="
echoid-s7280
"
xml:space
="
preserve
">curua ab ijſdem abſciſſa comprehen-
<
lb
/>
ſa, ſingillatim ſumpta, erit vt cubus baſis ipſius datæpara-
<
lb
/>
bolæ ad cubum rectæ lineæ dicto puncto interceptæ, & </
s
>
<
s
xml:id
="
echoid-s7281
"
xml:space
="
preserve
">alio
<
lb
/>
puncto eiuſdem baſis productæ, ſi opus ſit, in quod cadit
<
lb
/>
recta linea, quæ ducitur ab alio extremo puncto baſis re-
<
lb
/>
ſecti ſegmenti parallela axi, vel diametro ipſius datæ pa-
<
lb
/>
rabolæ.</
s
>
<
s
xml:id
="
echoid-s7282
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7283
"
xml:space
="
preserve
">Sit ergo data parabola, HNB, inbaſi, HB, ſumpto autem vno
<
lb
/>
extremorum punctorum, H, B, ipſius baſis, H B, vtipſum, H, ab
<
lb
/>
eo ducatur vtcunq; </
s
>
<
s
xml:id
="
echoid-s7284
"
xml:space
="
preserve
">recta linea, HA, ſupra baſim, HB, & </
s
>
<
s
xml:id
="
echoid-s7285
"
xml:space
="
preserve
">indefi-
<
lb
/>
nitè producta curua, NAB, alia, HV, ſubterbàſim, vt ſint con-
<
lb
/>
ſtituta ſegmenta, ANH, VBNH, ſit autem axis, vel diameter,
<
lb
/>
NO, cui parallelæ ducantur per puncta, AV, verſus baſim, HB,
<
lb
/>
<
figure
xlink:label
="
fig-0321-01
"
xlink:href
="
fig-0321-01a
"
number
="
215
">
<
image
file
="
0321-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0321-01
"/>
</
figure
>
productam, ſi opus ſit, occur-
<
lb
/>
rentes illi in punctis, X, C.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s7286
"
xml:space
="
preserve
">Dico ergo parabolam, HNB,
<
lb
/>
ad ſegmentum, HN.</
s
>
<
s
xml:id
="
echoid-s7287
"
xml:space
="
preserve
">A, eſſe vt
<
lb
/>
cubus, HB, ad cubum, HC. </
s
>
<
s
xml:id
="
echoid-s7288
"
xml:space
="
preserve
">
<
lb
/>
Eandem verò ad ſegmentum,
<
lb
/>
HNBV, eſſe vt cubum, BH,
<
lb
/>
ad cubum, HX, iungantur
<
lb
/>
puncta, B, A; </
s
>
<
s
xml:id
="
echoid-s7289
"
xml:space
="
preserve
">B, N; </
s
>
<
s
xml:id
="
echoid-s7290
"
xml:space
="
preserve
">N, H,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s7291
"
xml:space
="
preserve
">ſit, CE, tertia proportiona-
<
lb
/>
lis duarum, quarum prima eſt
<
lb
/>
tripla, CH, ſecunda autem ipſa, BC. </
s
>
<
s
xml:id
="
echoid-s7292
"
xml:space
="
preserve
">Quoniam ergo triangula,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0321-01
"
xlink:href
="
note-0321-01a
"
xml:space
="
preserve
">Coroll.1.
<
lb
/>
19.huius.</
note
>
NBH, BAH, ſunt in eadem baſi, BH, erunt inter ſe, vt altitu-
<
lb
/>
dines, vel vt lineæ, quæ a verticibus, NA, ad baſes ductæ cum
<
lb
/>
eiſdem æqualiter inclinantur .</
s
>
<
s
xml:id
="
echoid-s7293
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s7294
"
xml:space
="
preserve
">triangulum, HNB, ad triangu-
<
lb
/>
lum, HAB, erit vt, NO, ad, AC, .</
s
>
<
s
xml:id
="
echoid-s7295
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s7296
"
xml:space
="
preserve
">vt rectangulum, HOB,
<
lb
/>
ad rectangulum, HCB. </
s
>
<
s
xml:id
="
echoid-s7297
"
xml:space
="
preserve
">Inſuper triangulum, HNB, ad portion-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0321-02
"
xlink:href
="
note-0321-02a
"
xml:space
="
preserve
">Defin.12.
<
lb
/>
l.1.</
note
>
culam, ASB, habet rationem compoſitam ex ratione trianguli,
<
lb
/>
HNB, ad triangulum, HAB, .</
s
>
<
s
xml:id
="
echoid-s7298
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s7299
"
xml:space
="
preserve
">ex ratione rectanguli, HOB,
<
lb
/>
ad rectangulum, HCB, & </
s
>
<
s
xml:id
="
echoid-s7300
"
xml:space
="
preserve
">ex ratione trianguli, HAB, ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>