Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
321
(301)
322
(302)
323
(303)
324
(304)
325
(305)
326
(306)
327
(307)
328
(308)
329
(309)
330
(310)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(303)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div720
"
type
="
section
"
level
="
1
"
n
="
424
">
<
p
>
<
s
xml:id
="
echoid-s7310
"
xml:space
="
preserve
">
<
pb
o
="
303
"
file
="
0323
"
n
="
323
"
rhead
="
LIBER IV.
"/>
ſit ab illis tribus æquale eſt cubo mediæ ideſt parallelepipedum ſub
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0323-01
"
xlink:href
="
note-0323-01a
"
xml:space
="
preserve
">45.1.2.</
note
>
altitudine, CE, & </
s
>
<
s
xml:id
="
echoid-s7311
"
xml:space
="
preserve
">ſub baſi rectangulo ipſius, BC, ductæ in tri-
<
lb
/>
plam, CH, æquabitur cubo, BC, remanet adhuc parallelepipe-
<
lb
/>
dum ſub altitudine, HB, baſi t@ibus rectangulis, BCH, quod (al-
<
lb
/>
titudinem, BH, diuidentes in duas ſilicet in, BC, CH,) diuidi-
<
lb
/>
mus in parallelepipedum ſub altitudine, HC, baſirectangulo, H
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0323-02
"
xlink:href
="
note-0323-02a
"
xml:space
="
preserve
">35.1.2.</
note
>
CB, ter ſumpto ideſt in parallelepipedum ſub altitudine, BC, baſi
<
lb
/>
quadrato, CH, ter ſumpto, & </
s
>
<
s
xml:id
="
echoid-s7312
"
xml:space
="
preserve
">in parallelepipedum ſub altitudine,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0323-03
"
xlink:href
="
note-0323-03a
"
xml:space
="
preserve
">36.1.2.</
note
>
BC, baſi rectangulo, BCH, terſumpto ideſt in parallelep pedum
<
lb
/>
ſub altitudine, HC, baſi quadrato, BC, ter ſumpto; </
s
>
<
s
xml:id
="
echoid-s7313
"
xml:space
="
preserve
">parallepipe-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0323-04
"
xlink:href
="
note-0323-04a
"
xml:space
="
preserve
">36.1.2.</
note
>
dum ergo ſub altitudine compoſita ex, HB, CE, baſi rec@angu-
<
lb
/>
lo, HCB, ter ſumpto, æquatur parallelepipedis ter ſub, BC, & </
s
>
<
s
xml:id
="
echoid-s7314
"
xml:space
="
preserve
">
<
lb
/>
quadrato, CH, terſub, HC, & </
s
>
<
s
xml:id
="
echoid-s7315
"
xml:space
="
preserve
">quadrato, CB, cum cubo, CB,
<
lb
/>
ad hæc ergo ſimul ſumpta cubus, HB, erit vt parabola, HNB,
<
lb
/>
ad trilineum, HASB; </
s
>
<
s
xml:id
="
echoid-s7316
"
xml:space
="
preserve
">quia verò parallelepipedum ter ſub, BC,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0323-05
"
xlink:href
="
note-0323-05a
"
xml:space
="
preserve
">38.1.2.</
note
>
& </
s
>
<
s
xml:id
="
echoid-s7317
"
xml:space
="
preserve
">quadrato, CH, cum parallelepipedo ter ſub, HC, & </
s
>
<
s
xml:id
="
echoid-s7318
"
xml:space
="
preserve
">quadrato,
<
lb
/>
CB, cum cubo, CB, deficiunt à cubo, BH, quantitate cubi, HC,
<
lb
/>
ideo, per conuerſionem rationis, parabola, HNB, ad ſegmentum,
<
lb
/>
HNA, erit vt cubus, BH, ad cubum, HC.</
s
>
<
s
xml:id
="
echoid-s7319
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7320
"
xml:space
="
preserve
">Nuncdico parabolam, HNB, ad ſegmentum, HNBV, eſſe
<
lb
/>
vt cubum, BH, ad cubum, HX; </
s
>
<
s
xml:id
="
echoid-s7321
"
xml:space
="
preserve
">ducatur per, V, ipſi, BH, pa-
<
lb
/>
rallela, VZ, ſecans curuam parabolæ productam in, Z, & </
s
>
<
s
xml:id
="
echoid-s7322
"
xml:space
="
preserve
">à
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0323-06
"
xlink:href
="
note-0323-06a
"
xml:space
="
preserve
">@. huius.</
note
>
puncto, H, ipſi, NO, vel, XV, demittatur parallela, HI, oc-
<
lb
/>
currens ipſi, VZ, in, I, eſt ergo parabola, BNH, ad parabo-
<
lb
/>
lam, VBNHZ, vt cubus, BH, ad cubum, VZ, item parabo-
<
lb
/>
la, VBNHZ, ad ſegmentum, VBNH, (quia, VH, eſt ſupra
<
lb
/>
baſim, VZ,) eſt vt cubus, ZV, ad cubum, VI, vel, XH; </
s
>
<
s
xml:id
="
echoid-s7323
"
xml:space
="
preserve
">æqua-
<
lb
/>
lis, VI, quia, XI, eſt parallelogrammum; </
s
>
<
s
xml:id
="
echoid-s7324
"
xml:space
="
preserve
">ergo, ex æquali, pa-
<
lb
/>
rabola, HNB, ad ſegmentum, HNBV, conſtitutum per lineam
<
lb
/>
ductam à puncto extremo, H, baſis, BH, properantem infra
<
lb
/>
eandem baſim, BH, erit vt cubus, BH, ad cubum, HX, quæ o-
<
lb
/>
ſtendenda erant.</
s
>
<
s
xml:id
="
echoid-s7325
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div723
"
type
="
section
"
level
="
1
"
n
="
425
">
<
head
xml:id
="
echoid-head445
"
xml:space
="
preserve
">THEOREMA XIII. PROPOS. XIV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s7326
"
xml:space
="
preserve
">SIintra curuam parabolæ ducantur vtcunque duæ rectæ
<
lb
/>
lineæ in eandem curuam terminantes, parabola ab vna
<
lb
/>
ductarum conſtituta ad parabolam ab alia conſtitutam erit,
<
lb
/>
vt cubus primò ductæ ad cubum rectæ lineæ, quæ, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>