Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
321
(301)
322
(302)
323
(303)
324
(304)
325
(305)
326
(306)
327
(307)
328
(308)
329
(309)
330
(310)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(304)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div723
"
type
="
section
"
level
="
1
"
n
="
425
">
<
p
>
<
s
xml:id
="
echoid-s7326
"
xml:space
="
preserve
">
<
pb
o
="
304
"
file
="
0324
"
n
="
324
"
rhead
="
GEOMETRIÆ
"/>
per punctum extremum alterius ſecundò ductæ, parallela
<
lb
/>
primò ductæ, incluſæ dicto puncto, & </
s
>
<
s
xml:id
="
echoid-s7327
"
xml:space
="
preserve
">alio eiuſdem paralle-
<
lb
/>
læ productæ, ſi opus ſit; </
s
>
<
s
xml:id
="
echoid-s7328
"
xml:space
="
preserve
">in quod cadit, quæ ducitur per
<
lb
/>
aliud extremum punctum ſecundò ductæ, parallela axi, vel
<
lb
/>
diametro parabolæ per primò ductam conſtitutæ.</
s
>
<
s
xml:id
="
echoid-s7329
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7330
"
xml:space
="
preserve
">Sit curua parabolæ, BAEC, intra quam ſint vtcumq; </
s
>
<
s
xml:id
="
echoid-s7331
"
xml:space
="
preserve
">ductæ in
<
lb
/>
eandem curuam hinc inde terminantes (.</
s
>
<
s
xml:id
="
echoid-s7332
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s7333
"
xml:space
="
preserve
">quod non ſint ductæ pa-
<
lb
/>
rallelæ axi) primò, BC, ſecundò, AD; </
s
>
<
s
xml:id
="
echoid-s7334
"
xml:space
="
preserve
">ducatur deinde per vtrum
<
lb
/>
<
figure
xlink:label
="
fig-0324-01
"
xlink:href
="
fig-0324-01a
"
number
="
217
">
<
image
file
="
0324-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0324-01
"/>
</
figure
>
libet extremorum punctorum ſecundò
<
lb
/>
ductæ, vt per, A, ipſa, AF, parallela
<
lb
/>
ipſi, BC, in quam productam, ſi opus
<
lb
/>
ſit, incidat parallela axi, quæ ducitur
<
lb
/>
per punctum, D, aliud extremum
<
lb
/>
ipſius, AD, occurrat autem illi in, F.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s7335
"
xml:space
="
preserve
">Dico parabolam, BAEC, ad para-
<
lb
/>
bolam, AED, eſſe vt cubum, BC,
<
lb
/>
ad cubum, AF. </
s
>
<
s
xml:id
="
echoid-s7336
"
xml:space
="
preserve
">Eſt enim parabola,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0324-01
"
xlink:href
="
note-0324-01a
"
xml:space
="
preserve
">@. huius.</
note
>
BNC, ad parabolam, ANE, vt cubus, BC, ad cubum, AE,
<
lb
/>
item parabola, ANE, ad parabolam, ANED, eſt vt cubus, A
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0324-02
"
xlink:href
="
note-0324-02a
"
xml:space
="
preserve
">Exantec.</
note
>
E, ad cubum, AF, ergo parabola, BNC, ad parabolam, AN
<
lb
/>
ED, eſt vt cubus, BC, ad cubum, AF, quod oſtendere opus
<
lb
/>
erat.</
s
>
<
s
xml:id
="
echoid-s7337
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div725
"
type
="
section
"
level
="
1
"
n
="
426
">
<
head
xml:id
="
echoid-head446
"
xml:space
="
preserve
">THEOREMA XIV. PROPOS. XV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s7338
"
xml:space
="
preserve
">IN eadem antecedentis figura, ſi ducatur intra parabo-
<
lb
/>
lam, BNC, à puncto, V, ſumpto vtcumque in curua, B
<
lb
/>
NC, verſus baſim, BC, ipſa, VX, incidens baſi in, X, pa-
<
lb
/>
rallela axi, vel diametro eiuſdem parabolæ. </
s
>
<
s
xml:id
="
echoid-s7339
"
xml:space
="
preserve
">Dico parabo-
<
lb
/>
lam, ANED, ad ſegmentum, VCX, eſſe vt cubum, AF,
<
lb
/>
ad parallelepipedum ter ſub, BX, & </
s
>
<
s
xml:id
="
echoid-s7340
"
xml:space
="
preserve
">quadrato, XC, cum
<
lb
/>
cubo, XC.</
s
>
<
s
xml:id
="
echoid-s7341
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7342
"
xml:space
="
preserve
">Nam parabola, ANED, ad parabolam, BNC, conuertendo,
<
lb
/>
eſt vt cubus, AF, ad cubum, BC, item parabola, BNC, ad
<
lb
/>
ſegmentum, VCX, eſt vt cubus, BC, ad parallelepipedum ter ſub
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0324-03
"
xlink:href
="
note-0324-03a
"
xml:space
="
preserve
">6.huius.</
note
>
altitudine, BX, baſi quadrato, XC, cum cubo, XC, ergo, ex æ-
<
lb
/>
quali, parabola, ANED, ad ſegmentum, VXC, erit vt cubus,
<
lb
/>
AF, ad parallelepipedum terſub, BX, & </
s
>
<
s
xml:id
="
echoid-s7343
"
xml:space
="
preserve
">quadrato, XC, cum cu-
<
lb
/>
bo, XC, quod oſtendere oportebat.</
s
>
<
s
xml:id
="
echoid-s7344
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>