Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
321
322
323
324
325
326
327
328
329
330
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/330.jpg
"
pagenum
="
302
"/>
<
lb
/>
<
arrow.to.target
n
="
note278
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note278
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
6. Et motus Globi cum ejus reſiſtentia ſic exponi poteſt.
<
lb
/>
Sit
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
tempus quo Globus per reſiſtentiam ſuam uniformiter con
<
lb
/>
tinuatam totum ſuum motum amit
<
lb
/>
<
figure
id
="
id.039.01.330.1.jpg
"
xlink:href
="
039/01/330/1.jpg
"
number
="
184
"/>
<
lb
/>
tere poteſt. </
s
>
<
s
>Ad
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
erigantur per
<
lb
/>
pendicula
<
emph
type
="
italics
"/>
AD, BC.
<
emph.end
type
="
italics
"/>
Sitque
<
emph
type
="
italics
"/>
BC
<
emph.end
type
="
italics
"/>
<
lb
/>
motus ille totus, & per punctum
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
<
lb
/>
Aſymptotis
<
emph
type
="
italics
"/>
AD, AB
<
emph.end
type
="
italics
"/>
deſcribatur
<
lb
/>
Hyperbola
<
emph
type
="
italics
"/>
CF.
<
emph.end
type
="
italics
"/>
Producatur
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
punctum quodvis
<
emph
type
="
italics
"/>
E.
<
emph.end
type
="
italics
"/>
Erigatur per
<
lb
/>
pendiculum
<
emph
type
="
italics
"/>
EF
<
emph.end
type
="
italics
"/>
Hyperbolæ occur
<
lb
/>
rens in
<
emph
type
="
italics
"/>
F.
<
emph.end
type
="
italics
"/>
Compleatur parallelo
<
lb
/>
grammum
<
emph
type
="
italics
"/>
CBEG,
<
emph.end
type
="
italics
"/>
& agatur
<
emph
type
="
italics
"/>
AF
<
emph.end
type
="
italics
"/>
<
lb
/>
ipſi
<
emph
type
="
italics
"/>
BC
<
emph.end
type
="
italics
"/>
occurrens in
<
emph
type
="
italics
"/>
H.
<
emph.end
type
="
italics
"/>
Et ſi Globus tempore quovis
<
emph
type
="
italics
"/>
BE,
<
emph.end
type
="
italics
"/>
motu
<
lb
/>
ſuo primo
<
emph
type
="
italics
"/>
BC
<
emph.end
type
="
italics
"/>
uniformiter continuato, in Medio non reſiſtente de
<
lb
/>
ſcribat ſpatium
<
emph
type
="
italics
"/>
CBEG
<
emph.end
type
="
italics
"/>
per aream parallelogrammi expoſitum, idem
<
lb
/>
in Medio reſiſtente deſcribet ſpatium
<
emph
type
="
italics
"/>
CBEF
<
emph.end
type
="
italics
"/>
per aream Hyper
<
lb
/>
bolæ expoſitum, & motus ejus in fine temporis illius exponetur
<
lb
/>
per Hyperbolæ ordinatam
<
emph
type
="
italics
"/>
EF,
<
emph.end
type
="
italics
"/>
amiſſa motus ejus parte
<
emph
type
="
italics
"/>
FG.
<
emph.end
type
="
italics
"/>
Et
<
lb
/>
reſiſtentia ejus in fine temporis ejuſdem exponetur per longitudi
<
lb
/>
nem
<
emph
type
="
italics
"/>
BH,
<
emph.end
type
="
italics
"/>
amiſſa reſiſtentiæ parte
<
emph
type
="
italics
"/>
CH.
<
emph.end
type
="
italics
"/>
Patent hæc omnia per
<
lb
/>
Corol. 1. Prop. v. Lib. II.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
7. Hinc ſi Globus tempore T per reſiſtentiam R unifor
<
lb
/>
miter continuatam amittat motum ſuum totum M: idem Globus tem
<
lb
/>
pore
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
in Medio reſiſtente, per reſiſtentiam R in duplicata velocitatis
<
lb
/>
ratione decreſcentem, amittet motus ſui M partem (
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
M/T+
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
), manente
<
lb
/>
parte (TM/T+
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
), & deſcribet ſpatium quod ſit ad ſpatium motu uni
<
lb
/>
formi M eodem tempore
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
deſcriptum, ut Logarithmus numeri
<
lb
/>
(T+
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
/T) multiplicatus per numerum 2,302585092994 eſt ad nume
<
lb
/>
rum
<
emph
type
="
italics
"/>
t
<
emph.end
type
="
italics
"/>
/T. Nam area Hyperbolica
<
emph
type
="
italics
"/>
BCFE
<
emph.end
type
="
italics
"/>
eſt ad rectangulum
<
lb
/>
<
emph
type
="
italics
"/>
BCGE
<
emph.end
type
="
italics
"/>
in hac proportione.
<
lb
/>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Scholium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>In hac Propoſitione expoſui reſiſtentiam & retardationem Pro
<
lb
/>
jectilium Sphærieorum in Mediis non continuis, & oſtendi quod
<
lb
/>
hæc reſiſtentia ſit ad vim qua totus Globi motus vel tolli poſſit vel </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>