Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
321
(301)
322
(302)
323
(303)
324
(304)
325
(305)
326
(306)
327
(307)
328
(308)
329
(309)
330
(310)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(310)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div741
"
type
="
section
"
level
="
1
"
n
="
436
">
<
pb
o
="
310
"
file
="
0330
"
n
="
330
"
rhead
="
GEOMETRIÆ
"/>
</
div
>
<
div
xml:id
="
echoid-div742
"
type
="
section
"
level
="
1
"
n
="
437
">
<
head
xml:id
="
echoid-head457
"
xml:space
="
preserve
">SCHOLIV M.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s7476
"
xml:space
="
preserve
">_D_Eſiderari fortè tamen videtur, quod oſtendamus has varietates
<
lb
/>
parabolis contingere poſſe, nec eaſdem eſſe, exempligratia, vt
<
lb
/>
circulos, quibus tantum contingit ſe habere, vt diametrorum quadra-
<
lb
/>
ta, nec alia ijſdem accidit variatio, propterea ſubſequens Theorema,
<
lb
/>
ſubijciemus.</
s
>
<
s
xml:id
="
echoid-s7477
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div743
"
type
="
section
"
level
="
1
"
n
="
438
">
<
head
xml:id
="
echoid-head458
"
xml:space
="
preserve
">THEOREMA XIX. PROPOS. XX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s7478
"
xml:space
="
preserve
">DAto quocunq; </
s
>
<
s
xml:id
="
echoid-s7479
"
xml:space
="
preserve
">parallelogrammo, circa eiuſdem duo
<
lb
/>
latera angulum continentia ſemiparabola deſcribi
<
lb
/>
poteſt, cuius alterum eorundem laterum ſit baſis, alterum
<
lb
/>
axis, vel diameter integræ parabolæ, ad quem dicta baſis
<
lb
/>
ordinatim applicatur.</
s
>
<
s
xml:id
="
echoid-s7480
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7481
"
xml:space
="
preserve
">Sit parallelogrammum quodcunque, AD, cuius ſumantur vt-
<
lb
/>
cunque duo latera, AC, CD, circa angulum, ACD. </
s
>
<
s
xml:id
="
echoid-s7482
"
xml:space
="
preserve
">Dico cir-
<
lb
/>
ca, AC, CD, ſemiparabolam de@cribi poſſe, ita vt alterum ipſo-
<
lb
/>
rum, AC, CD, ſit baſis dictæ ſemiparabolæ, alterum ſit axis, vel
<
lb
/>
<
figure
xlink:label
="
fig-0330-01
"
xlink:href
="
fig-0330-01a
"
number
="
221
">
<
image
file
="
0330-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0330-01
"/>
</
figure
>
diameter integræ parabolæ; </
s
>
<
s
xml:id
="
echoid-s7483
"
xml:space
="
preserve
">Eſto
<
lb
/>
quod velimus, CD, eſſe baſim, &</
s
>
<
s
xml:id
="
echoid-s7484
"
xml:space
="
preserve
">,
<
lb
/>
CA, axim, vel diametrum inte-
<
lb
/>
græ parabolæ; </
s
>
<
s
xml:id
="
echoid-s7485
"
xml:space
="
preserve
">applicetur ergo ad,
<
lb
/>
AC, rectangulum æquale quadra-
<
lb
/>
to, CD, quod latitudinem faciat
<
lb
/>
ipſam, XA, erit ergo quadratum,
<
lb
/>
CD, æquale rectangulo ſub, CA,
<
lb
/>
AX, &</
s
>
<
s
xml:id
="
echoid-s7486
"
xml:space
="
preserve
">, AX, erit linea, iuxta
<
lb
/>
quam poſſunt, quæ à curua para-
<
lb
/>
bolæ tranſeunte per puncta, D, A,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0330-01
"
xlink:href
="
note-0330-01a
"
xml:space
="
preserve
">Schol.40.
<
lb
/>
lib.1.</
note
>
vertice, A, ad axim, vel diametrum, AC, ordinatim applicari
<
lb
/>
poſſunt; </
s
>
<
s
xml:id
="
echoid-s7487
"
xml:space
="
preserve
">erit ergo quædam ſemiparabola, cuius curua tranſibit per
<
lb
/>
puncta, AD, in baſi, CD, exiſtente, AC, axi, vel diametro in-
<
lb
/>
tegræ parabolæ, ſit autem dicta ſemiparabola, ACD, quod oſten-
<
lb
/>
dere opus erat.</
s
>
<
s
xml:id
="
echoid-s7488
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>