Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota

List of thumbnails

< >
321
321 (301)
322
322 (302)
323
323 (303)
324
324 (304)
325
325 (305)
326
326 (306)
327
327 (307)
328
328 (308)
329
329 (309)
330
330 (310)
< >
page |< < (310) of 569 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div741" type="section" level="1" n="436">
          <pb o="310" file="0330" n="330" rhead="GEOMETRIÆ"/>
        </div>
        <div xml:id="echoid-div742" type="section" level="1" n="437">
          <head xml:id="echoid-head457" xml:space="preserve">SCHOLIV M.</head>
          <p style="it">
            <s xml:id="echoid-s7476" xml:space="preserve">_D_Eſiderari fortè tamen videtur, quod oſtendamus has varietates
              <lb/>
            parabolis contingere poſſe, nec eaſdem eſſe, exempligratia, vt
              <lb/>
            circulos, quibus tantum contingit ſe habere, vt diametrorum quadra-
              <lb/>
            ta, nec alia ijſdem accidit variatio, propterea ſubſequens Theorema,
              <lb/>
            ſubijciemus.</s>
            <s xml:id="echoid-s7477" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div743" type="section" level="1" n="438">
          <head xml:id="echoid-head458" xml:space="preserve">THEOREMA XIX. PROPOS. XX.</head>
          <p>
            <s xml:id="echoid-s7478" xml:space="preserve">DAto quocunq; </s>
            <s xml:id="echoid-s7479" xml:space="preserve">parallelogrammo, circa eiuſdem duo
              <lb/>
            latera angulum continentia ſemiparabola deſcribi
              <lb/>
            poteſt, cuius alterum eorundem laterum ſit baſis, alterum
              <lb/>
            axis, vel diameter integræ parabolæ, ad quem dicta baſis
              <lb/>
            ordinatim applicatur.</s>
            <s xml:id="echoid-s7480" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s7481" xml:space="preserve">Sit parallelogrammum quodcunque, AD, cuius ſumantur vt-
              <lb/>
            cunque duo latera, AC, CD, circa angulum, ACD. </s>
            <s xml:id="echoid-s7482" xml:space="preserve">Dico cir-
              <lb/>
            ca, AC, CD, ſemiparabolam de@cribi poſſe, ita vt alterum ipſo-
              <lb/>
            rum, AC, CD, ſit baſis dictæ ſemiparabolæ, alterum ſit axis, vel
              <lb/>
              <figure xlink:label="fig-0330-01" xlink:href="fig-0330-01a" number="221">
                <image file="0330-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0330-01"/>
              </figure>
            diameter integræ parabolæ; </s>
            <s xml:id="echoid-s7483" xml:space="preserve">Eſto
              <lb/>
            quod velimus, CD, eſſe baſim, &</s>
            <s xml:id="echoid-s7484" xml:space="preserve">,
              <lb/>
            CA, axim, vel diametrum inte-
              <lb/>
            græ parabolæ; </s>
            <s xml:id="echoid-s7485" xml:space="preserve">applicetur ergo ad,
              <lb/>
            AC, rectangulum æquale quadra-
              <lb/>
            to, CD, quod latitudinem faciat
              <lb/>
            ipſam, XA, erit ergo quadratum,
              <lb/>
            CD, æquale rectangulo ſub, CA,
              <lb/>
            AX, &</s>
            <s xml:id="echoid-s7486" xml:space="preserve">, AX, erit linea, iuxta
              <lb/>
            quam poſſunt, quæ à curua para-
              <lb/>
            bolæ tranſeunte per puncta, D, A,
              <lb/>
              <note position="left" xlink:label="note-0330-01" xlink:href="note-0330-01a" xml:space="preserve">Schol.40.
                <lb/>
              lib.1.</note>
            vertice, A, ad axim, vel diametrum, AC, ordinatim applicari
              <lb/>
            poſſunt; </s>
            <s xml:id="echoid-s7487" xml:space="preserve">erit ergo quædam ſemiparabola, cuius curua tranſibit per
              <lb/>
            puncta, AD, in baſi, CD, exiſtente, AC, axi, vel diametro in-
              <lb/>
            tegræ parabolæ, ſit autem dicta ſemiparabola, ACD, quod oſten-
              <lb/>
            dere opus erat.</s>
            <s xml:id="echoid-s7488" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>