Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
331
332
333
334
335
336
337
338
339
340
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/331.jpg
"
pagenum
="
303
"/>
<
lb
/>
generari quo tempore Globus duas tertias diametri ſuæ partes, ve
<
lb
/>
<
arrow.to.target
n
="
note279
"/>
locitate uniformiter continuata deſcribat, ut denſitas Medii ad
<
lb
/>
denſitatem Globi, ſi modo Globus & particulæ Medii ſint ſumme
<
lb
/>
elaſtica & vi maxima reflectendi polleant: quodque hæc vis ſit
<
lb
/>
duplo minor ubi Globus & particulæ Medii ſunt infinite dura &
<
lb
/>
vi reflectendi prorſus deſtituta. </
s
>
<
s
>In Medus autem continuis qualia
<
lb
/>
ſunt Aqua, Oleum calidum, & Argentum vivum, in quibus Globus
<
lb
/>
non incidit immediate in omnes fluidi particulas reſiſtentiam gene
<
lb
/>
rantes, ſed premit tantum proximas particulas & hæ premunt alias
<
lb
/>
& hæ alias, reſiſtentia eſt adhuc duplo minor. </
s
>
<
s
>Globus utiQ.E.I.
<
lb
/>
hujuſmodi Mediis fluidiſſimis reſiſtentiam patitur quæ eſt ad vim
<
lb
/>
qua totus ejus motus vel tolli poſſit vel generari quo tempore,
<
lb
/>
motu illo uniformiter continuato, partes octo tertias diametri ſuæ
<
lb
/>
deſcribat, ut denſitas Medii ad denſitatem Globi. </
s
>
<
s
>Id quod in ſe
<
lb
/>
quentibus conabimur oſtendere.
<
lb
/>
<
emph
type
="
center
"/>
PROPOSITIO XXXVI. PROBLEMA VIII.
<
emph.end
type
="
center
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note279
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Aquæ de vaſe Cylindrico per foramen in fundo factum effluentis
<
lb
/>
definire motum.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Sit
<
emph
type
="
italics
"/>
ACDB
<
emph.end
type
="
italics
"/>
vas cylindricum,
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
ejus orificium ſuperius,
<
emph
type
="
italics
"/>
CD
<
emph.end
type
="
italics
"/>
<
lb
/>
fundum horizonti parallelum,
<
emph
type
="
italics
"/>
EF
<
emph.end
type
="
italics
"/>
foramen circulare in medio
<
lb
/>
fundi,
<
emph
type
="
italics
"/>
G
<
emph.end
type
="
italics
"/>
centrum foraminis, &
<
emph
type
="
italics
"/>
GH
<
emph.end
type
="
italics
"/>
axis cylindri horizonti per
<
lb
/>
pendicularis. </
s
>
<
s
>Et concipe cylindrum gla
<
lb
/>
<
figure
id
="
id.039.01.331.1.jpg
"
xlink:href
="
039/01/331/1.jpg
"
number
="
185
"/>
<
lb
/>
ciei
<
emph
type
="
italics
"/>
APQB
<
emph.end
type
="
italics
"/>
ejuſdem eſſe latitudinis
<
lb
/>
cum cavitate vaſis, & axem eundem ha
<
lb
/>
bere, & uniformi cum motu perpetuo
<
lb
/>
deſcendere, & partes ejus quam primum
<
lb
/>
attingunt ſuperficiem
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
liqueſcere, &
<
lb
/>
in aquam converſas gravitate ſua defluere
<
lb
/>
in vas, & cataractam vel columnam aquæ
<
lb
/>
<
emph
type
="
italics
"/>
ABNFEM
<
emph.end
type
="
italics
"/>
cadendo formare, & per
<
lb
/>
foramen
<
emph
type
="
italics
"/>
EF
<
emph.end
type
="
italics
"/>
tranſire, idemque adæquate
<
lb
/>
implere. </
s
>
<
s
>Ea vero ſit uniformis veloci
<
lb
/>
tas glaciei deſcendentis ut & aquæ con
<
lb
/>
tiguæ in circulo
<
emph
type
="
italics
"/>
AB,
<
emph.end
type
="
italics
"/>
quam aqua caden
<
lb
/>
do & caſu ſuo deſcribendo altitudinem
<
lb
/>
<
emph
type
="
italics
"/>
IH
<
emph.end
type
="
italics
"/>
acquirere poteſt; & jaceant
<
emph
type
="
italics
"/>
IH
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
HG
<
emph.end
type
="
italics
"/>
in directum, & per
<
lb
/>
punctum
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
ducatur recta
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
horizonti parallela & lateribus gla-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>