Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
331
332
333
334
335
336
337
338
339
340
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/334.jpg
"
pagenum
="
306
"/>
<
lb
/>
<
arrow.to.target
n
="
note282
"/>
dem velocitatem acquirit in utroque caſu, ut
<
emph
type
="
italics
"/>
Galilæus
<
emph.end
type
="
italics
"/>
demon
<
lb
/>
ſtravit.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note282
"/>
DE MOTU
<
lb
/>
CORPORUM.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
3. Eadem eſt aquæ velocitas effluentis per foramen in la
<
lb
/>
tere vaſis. </
s
>
<
s
>Nam ſi foramen parvum ſit, ut intervallum inter ſuper
<
lb
/>
ficies
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
quoad ſenſum evaneſcat, & vena aquæ hori
<
lb
/>
zontaliter exilientis figuram Parabolicam efformet: ex latere recto
<
lb
/>
hujus Parabolæ colligetur, quod velocitas aquæ effluentis ea ſit
<
lb
/>
quam corpus ab aquæ in vaſe ſtagnantis altitudine
<
emph
type
="
italics
"/>
HG
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
IG
<
emph.end
type
="
italics
"/>
ca
<
lb
/>
dendo acquirere potuiſſet. </
s
>
<
s
>Facto utique experimento inveni quod,
<
lb
/>
ſi altitudo aquæ ſtagnantis ſupra foramen eſſet viginti digitorum
<
lb
/>
& altitudo foraminis ſupra planum horizonti parallelum eſſet quo
<
lb
/>
que viginti digitorum, vena aquæ proſilientis incideret in planum
<
lb
/>
illud ad diſtantiam digitorum 37 circiter à perpendiculo quod in
<
lb
/>
planum illud à foramine demittebatur captam. </
s
>
<
s
>Nam ſine reſiſten
<
lb
/>
tia vena incidere debuiſſet in planum illud ad diſtantiam digitorum
<
lb
/>
40, exiſtente venæ Parabolicæ latere recto digitorum 80.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
4. Quinetiam aqua effluens, ſi ſurſum feratur, eadem egre
<
lb
/>
ditur cum velocitate. </
s
>
<
s
>Aſcendit enim aquæ exilientis vena parva
<
lb
/>
motu perpendiculari ad aquæ in vaſe ſtagnantis altitudinem
<
emph
type
="
italics
"/>
GH
<
emph.end
type
="
italics
"/>
<
lb
/>
vel
<
emph
type
="
italics
"/>
GI,
<
emph.end
type
="
italics
"/>
niſi quatenus aſcenſus ejus ab aeris reſiſtentia aliquantu
<
lb
/>
lum impediatur; ac proinde ea effluit cum velocitate quam ab al
<
lb
/>
titudine illa cadendo acquirere potuiſſet.
<
lb
/>
<
figure
id
="
id.039.01.334.1.jpg
"
xlink:href
="
039/01/334/1.jpg
"
number
="
187
"/>
<
lb
/>
Aquæ ſtagnantis particula unaquæque
<
lb
/>
undique premitur æqualiter, per Prop.
<
lb
/>
XIX. Lib. II, & preſſioni cedendo æquali
<
lb
/>
impetu in omnes partes fertur, ſive de
<
lb
/>
ſcendat per foramen in fundo vaſis, ſive
<
lb
/>
horizontaliter effluat per foramen in ejus
<
lb
/>
latere, ſive egrediatur in canalem & inde
<
lb
/>
aſcendat per foramen parvum in ſuperiore
<
lb
/>
canalis parte factum. </
s
>
<
s
>Et velocitatem qua
<
lb
/>
aqua effluit, eam eſſe quam in hac Pro
<
lb
/>
poſitione aſſignavimus, non ſolum rati
<
lb
/>
one colligitus, ſed etiam per experimenta
<
lb
/>
notiſſima jam deſcripta manifeſtum eſt.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
5. Eadem eſt aquæ effluentis velocitas ſive figura foraminis
<
lb
/>
ſit circularis ſive quadrata vel triangularis aut alia quæcunque cir
<
lb
/>
culari æqualis. </
s
>
<
s
>Nam velocitas aquæ effluentis non pendet à figura
<
lb
/>
foraminis ſed ab ejus altitudine infra planum
<
emph
type
="
italics
"/>
KL.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
6. Si vaſis
<
emph
type
="
italics
"/>
ABDC
<
emph.end
type
="
italics
"/>
pars inferior in aquam ſtagnantem im-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>