Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
331
332
333
334
335
336
337
338
339
340
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/337.jpg
"
pagenum
="
309
"/>
<
lb
/>
convexa erit verſus cataractam, & propterea major Cono cujus ba
<
lb
/>
<
arrow.to.target
n
="
note285
"/>
ſis eſt circellus ille
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
& altitudo
<
emph
type
="
italics
"/>
GH,
<
emph.end
type
="
italics
"/>
id eſt, major tertia parte
<
lb
/>
Cylindri eadem baſe & altitudine deſcripti. </
s
>
<
s
>Suſtinet autem cir
<
lb
/>
cellus ille pondus hujus columnæ, id eſt, pondus quod pondere
<
lb
/>
Coni ſeu tertiæ partis Cylindri illius majus eſt.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note285
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
8. Pondus aquæ quam circellus valde parvus
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ſuſtinet,
<
lb
/>
minor eſt pondere duarum tertiarum partium Cylindri aquæ cujus
<
lb
/>
baſis eſt circellus ille & altitudo eſt
<
emph
type
="
italics
"/>
HG.
<
emph.end
type
="
italics
"/>
Nam ſtantibus jam po
<
lb
/>
ſitis, deſcribi intelligatur dimidium Sphæroidis cujus baſis eſt cir
<
lb
/>
cellus ille & ſemiaxis ſive altitudo eſt
<
emph
type
="
italics
"/>
HG.
<
emph.end
type
="
italics
"/>
Et hæc figura æqualis
<
lb
/>
erit duabus tertiis partibus Cylindri illius & comprehendet colum
<
lb
/>
nam aquæ congelatæ
<
emph
type
="
italics
"/>
PHQ
<
emph.end
type
="
italics
"/>
cujus pondus circellus ille ſuſtinet.
<
lb
/>
Nam ut motus aquæ ſit maxime directus, columnæ illius ſuper
<
lb
/>
ficies externa concurret cum baſi
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
in angulo nonnihil acuto,
<
lb
/>
propterea quod aqua cadendo perpetuo acceleratur & propter ac
<
lb
/>
celerationem fit tenuior; & cum angulus ille ſit recto minor, hæc
<
lb
/>
columna ad inferiores ejus partes jacebit intra dimidium Sphæroi
<
lb
/>
dis. </
s
>
<
s
>Eadem vero ſurſum acuta erit ſeu cuſpidata, ne horizontalis
<
lb
/>
motus aquæ ad verticem Sphæroidis ſit infinite velocior quam ejus
<
lb
/>
motus horizontem verſus. </
s
>
<
s
>Et quo minor eſt circellus
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
eo
<
lb
/>
acutior erit vertex columnæ; & circello in infinitum diminuto, an
<
lb
/>
gulus
<
emph
type
="
italics
"/>
PHQ
<
emph.end
type
="
italics
"/>
in infinitum diminuetur, & propterea columna ja
<
lb
/>
cebit intra dimidium Sphæroidis. </
s
>
<
s
>Eſt igitur columna illa minor
<
lb
/>
dimidio Sphæroidis, ſeu duabus tertiis partibus Cylindri cujus baſis
<
lb
/>
eſt circellus ille & altitudo
<
emph
type
="
italics
"/>
GH.
<
emph.end
type
="
italics
"/>
Suſtinet autem circellus vim aquæ
<
lb
/>
ponderi hujus columnæ æqualem, cum pondus aquæ ambientis in
<
lb
/>
defluxum ejus impendatur.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
9. Pondus aquæ quam circellus valde parvus
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ſuſti
<
lb
/>
net, æquale ſet ponderi Cylindri aquæ cujus baſis eſt circellus ille
<
lb
/>
& altitudo eſt 1/2
<
emph
type
="
italics
"/>
GH
<
emph.end
type
="
italics
"/>
quamproxime. </
s
>
<
s
>Nam pondus hocce eſt me
<
lb
/>
dium Arithmeticum inter pondera Coni & Hemiſphæroidis præ
<
lb
/>
dictæ. At ſi circellus ille non ſit valde parvus, ſed augeatur donec
<
lb
/>
æquet foramen
<
emph
type
="
italics
"/>
EF
<
emph.end
type
="
italics
"/>
; hic ſuſtinebit pondus aquæ totius ſibi per
<
lb
/>
pendiculariter imminentis, id eſt, pondus Cylindri aquæ cujus ba
<
lb
/>
ſis eſt circellus ille & altitudo eſt
<
emph
type
="
italics
"/>
GH.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
10. Et (quantum ſentio) pondus quod circellus ſuſtinet,
<
lb
/>
eſt ſemper ad pondus Cylindri aquæ cujus baſis eſt circellus ille &
<
lb
/>
altitudo eſt 1/2
<
emph
type
="
italics
"/>
GH,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
-1/2
<
emph
type
="
italics
"/>
PQq,
<
emph.end
type
="
italics
"/>
ſive ut circulus
<
lb
/>
<
emph
type
="
italics
"/>
EF
<
emph.end
type
="
italics
"/>
ad exceſſum circuli hujus ſupra ſemiſſem circelli
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
quam
<
lb
/>
proxime. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>