Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
331
332
333
334
335
336
337
338
339
340
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/339.jpg
"
pagenum
="
311
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Et (per Cor. 10, Prop.XXXVI) ſi vaſis latitudo ſit infinita, ut li
<
lb
/>
<
arrow.to.target
n
="
note287
"/>
neola
<
emph
type
="
italics
"/>
HI
<
emph.end
type
="
italics
"/>
evaneſcat & altitudines
<
emph
type
="
italics
"/>
IG, HG
<
emph.end
type
="
italics
"/>
æquentur: vis aquæ
<
lb
/>
defluentis in circellum erit ad pondus Cylindri cujus baſis eſt cir
<
lb
/>
cellus ille & altitudo eſt 1/2
<
emph
type
="
italics
"/>
IG,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
-1/2
<
emph
type
="
italics
"/>
PQq
<
emph.end
type
="
italics
"/>
quam
<
lb
/>
proxime. </
s
>
<
s
>Nam vis aquæ, uniformi motu defluentis per totum ca
<
lb
/>
nalem, eadem erit in circellum
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
in quacunque canalis parte
<
lb
/>
locatum.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note287
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Claudantur jam canalis orificia
<
emph
type
="
italics
"/>
EF, ST,
<
emph.end
type
="
italics
"/>
& aſcendat circellus in
<
lb
/>
fluido undique compreſſo & aſcenſu ſuo cogat aquam ſuperiorem
<
lb
/>
deſcendere per ſpatium annulare inter circellum & latera cana
<
lb
/>
lis: & velocitas circelli aſcendentis erit ad velocitatem aquæ
<
lb
/>
deſcendentis ut differentia circulorum
<
emph
type
="
italics
"/>
EF
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ad circulum
<
lb
/>
<
emph
type
="
italics
"/>
PQ,
<
emph.end
type
="
italics
"/>
& velocitas circelli aſcendentis ad ſummam velocitatum,
<
lb
/>
hoc eſt, ad velocitatem relativam aquæ deſcendentis qua præ
<
lb
/>
terfluit circellum aſcendentem, ut differentia circulorum
<
emph
type
="
italics
"/>
EF
<
emph.end
type
="
italics
"/>
&
<
lb
/>
<
emph
type
="
italics
"/>
PQ
<
emph.end
type
="
italics
"/>
ad circulum
<
emph
type
="
italics
"/>
EF,
<
emph.end
type
="
italics
"/>
ſive ut
<
emph
type
="
italics
"/>
EFq-PQq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
EFq.
<
emph.end
type
="
italics
"/>
Sit illa
<
lb
/>
velocitas relativa æqualis velocitati qua ſupra oſtenſum eſt
<
lb
/>
aquam tranſire per idem ſpatium annulare dum circellus interea
<
lb
/>
immotus manet, id eſt, velocitati quam aqua cadendo & caſu ſuo
<
lb
/>
deſcribendo altitudinem
<
emph
type
="
italics
"/>
IG
<
emph.end
type
="
italics
"/>
acquirere poteſt: & vis aquæ in cir
<
lb
/>
cellum aſcendentem eadem erit ac prius, per Legum Cor. 5, id eſt,
<
lb
/>
Reſiſtentia circelli aſcendentis erit ad pondus Cylindri aquæ cujus
<
lb
/>
baſis eſt circellus ille & altitudo eſt 1/2
<
emph
type
="
italics
"/>
IG,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
-1/2
<
emph
type
="
italics
"/>
PQq
<
emph.end
type
="
italics
"/>
<
lb
/>
quamproxime. </
s
>
<
s
>Velocitas autem circelli erit ad velocitatem quam
<
lb
/>
aqua cadendo & caſu ſuo deſcribendo altitudinem
<
emph
type
="
italics
"/>
IG
<
emph.end
type
="
italics
"/>
acquirit,
<
lb
/>
ut
<
emph
type
="
italics
"/>
EFq-PQq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
EFq.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Augeatur amplitudo canalis in infinitum: & rationes illæ inter
<
lb
/>
<
emph
type
="
italics
"/>
EFq-PQq
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
EFq,
<
emph.end
type
="
italics
"/>
interque
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
-1/2
<
emph
type
="
italics
"/>
PQq
<
emph.end
type
="
italics
"/>
acce
<
lb
/>
dent ultimo ad rationes æqualitatis. </
s
>
<
s
>Et propterea Velocitas cir
<
lb
/>
celli ea nunc erit quam aqua cadendo & caſu ſuo deſcribendo al
<
lb
/>
titudinem
<
emph
type
="
italics
"/>
IG
<
emph.end
type
="
italics
"/>
acquirere poteſt, Reſiſtentia vero ejus æqualis eva
<
lb
/>
det ponderi Cylindri cujus baſis eſt circellus ille & altitudo di
<
lb
/>
midium eſt altitudinis
<
emph
type
="
italics
"/>
IG,
<
emph.end
type
="
italics
"/>
a qua Cylindrus cadere debet ut velo
<
lb
/>
citatem circelli aſcendentis acquirat; & hac velocitate Cylindrus,
<
lb
/>
tempore cadendi, quadruplum longitudinis ſuæ deſcribet. </
s
>
<
s
>Reſi
<
lb
/>
ſtentia autem Cylindri, hac velocitate ſecundum longitudinem ſuam
<
lb
/>
progredientis, eadem eſt cum Reſiſtentia circelli per Lemma IV;
<
lb
/>
ideoque æqualis eſt Vi qua motus ejus, interea dum quadruplum
<
lb
/>
longitudinis ſuæ deſcribit, generari poteſt quamproxime. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>