Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
341
342
343
344
345
346
347
348
349
350
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/341.jpg
"
pagenum
="
313
"/>
<
lb
/>
ſemel, & ratione
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
EFq-PQq
<
emph.end
type
="
italics
"/>
bis, & ratione denſitatis
<
lb
/>
<
arrow.to.target
n
="
note289
"/>
Medii ad denſitatem Cylindri.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note289
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Iiſdem poſitis, & quod longitudo L ſit ad quadru
<
lb
/>
plum longitudinis Cylindri in ratione quæ componitur ex ratione
<
lb
/>
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
-1/2
<
emph
type
="
italics
"/>
PQq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
ſemel, & ratione
<
emph
type
="
italics
"/>
EFq-PQq
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
EFq
<
emph.end
type
="
italics
"/>
<
lb
/>
bis: reſiſtentia Cylindri erit ad vim qua totus ejus motus, interea
<
lb
/>
dum longitudinem L deſcribit, vel tolli poſſit vel generari, ut
<
lb
/>
denſitas Medii ad denſitatem Cylindri.
<
lb
/>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Scholium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>In hac Propoſitione reſiſtentiam inveſtigavimus quæ oritur a
<
lb
/>
ſola magnitudine tranſverſæ ſectionis Cylindri, neglecta reſiſtentiæ
<
lb
/>
parte quæ ab obliquitate motuum oriri poſſit. </
s
>
<
s
>Nam quemadmo
<
lb
/>
dum in caſu primo Propoſitionis XXXVI, obliquitas motuum qui
<
lb
/>
bus partes aquæ in vaſe, undique convergebant in foramen
<
emph
type
="
italics
"/>
EF,
<
emph.end
type
="
italics
"/>
<
lb
/>
impedivit effluxum aquæ illius per foramen: ſic in hac Propoſiti
<
lb
/>
one, obliquitas motuum quibus partes aquæ ab anteriore Cylindri
<
lb
/>
termino preſſæ, cedunt preſſioni & undiQ.E.D.vergunt, retardat eo
<
lb
/>
rum tranſitum per loca in circuitu termini illius antecedentis ver
<
lb
/>
ſus poſteriores partes Cylindri, efficitque ut fluidum ad majorem
<
lb
/>
diſtantiam commoveatur & reſiſtentiam auget, idQ.E.I. ea fere
<
lb
/>
ratione qua effluxum aquæ e vaſe diminuit, id eſt, in ratione du
<
lb
/>
plicata 25 ad 21 circiter. </
s
>
<
s
>Et quemadmodum, in Propoſitionis illius
<
lb
/>
caſu primo, effecimus ut partes aquæ perpendiculariter & maxima
<
lb
/>
copia tranſirent per foramen
<
emph
type
="
italics
"/>
EF,
<
emph.end
type
="
italics
"/>
ponendo quod aqua omnis in
<
lb
/>
vaſe quæ in circuitu cataractæ congelata fuerat, & cujus motus
<
lb
/>
obliquus erat & inutilis, maneret ſine motu: ſic in hac Propoſi
<
lb
/>
tione, ut obliquitas motuum tollatur, & partes aquæ motu maxime
<
lb
/>
directo & breviſſimo cedentes facillimum præbeant tranſitum Cy
<
lb
/>
lindro, & ſola maneat reſiſtentia quæ oritur a magnitudine ſecti
<
lb
/>
onis tranſverſæ, quæQ.E.D.minui non poteſt niſi diminuendo dia
<
lb
/>
metrum Cylindri, concipiendum eſt quod partes fluidi quarum
<
lb
/>
motus ſunt obliqui & inutiles & reſiſtentiam creant, quieſcant in
<
lb
/>
ter ſe ad utrumque Cylindri ter
<
lb
/>
<
figure
id
="
id.039.01.341.1.jpg
"
xlink:href
="
039/01/341/1.jpg
"
number
="
190
"/>
<
lb
/>
minum, & cohæreant & Cylindro
<
lb
/>
jungantur. </
s
>
<
s
>Sit
<
emph
type
="
italics
"/>
ABCD
<
emph.end
type
="
italics
"/>
rectan
<
lb
/>
gulum, & ſint
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
BE
<
emph.end
type
="
italics
"/>
arcus
<
lb
/>
duo Parabolici axe
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
deſcripti,
<
lb
/>
latere autem recto quod ſit ad ſpa-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>