Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
341
342
343
344
345
346
347
348
349
350
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/345.jpg
"
pagenum
="
317
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
4. Globus in fluido compreſſo quieſcente ejuſdem ſecum
<
lb
/>
<
arrow.to.target
n
="
note293
"/>
denſitatis movendo, dimidiam motus ſui partem prius amittet
<
lb
/>
quam longitudinem duarum ipſius diametrorum deſcripſerit, per
<
lb
/>
idem Corol. 7.
<
lb
/>
<
emph
type
="
center
"/>
PROPOSITIO XXXIX. THEOREMA XXXI.
<
emph.end
type
="
center
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note293
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Globi, per Fluidum in canali Cylindrico clauſum & compreſſum uni
<
lb
/>
formiter progredientis, reſiſtentia eſt ad vim qua totus ejus motus,
<
lb
/>
interea dum octo tertias partes diametri ſuæ deſcribit, vel ge
<
lb
/>
nerari poſſit vel tolli, in ratione quæ componitur ex ratione ori
<
lb
/>
ficii canalis ad exceſſum hujus orificii ſupra dimidium circuli
<
lb
/>
maximi Globi, & ratione duplicata orificii canalis ad exceſſum
<
lb
/>
hujus orificii ſupra circulum maximum Globi, & ratione den
<
lb
/>
ſitatis Fluidi ad denſitatem Globi quamproxime.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Patet per Corol. 2. Prop. XXXVII; procedit vero demonſtratio
<
lb
/>
quemadmodum in Propoſitione præcedente.
<
lb
/>
<
emph
type
="
center
"/>
PROPOSITIO XL. PROBLEMA IX.
<
emph.end
type
="
center
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Globi, in Medio fluidiſſimo compreſſo progredientis, invenire reſi
<
lb
/>
ſtentiam per Phænomena.
<
emph.end
type
="
italics
"/>
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Sit A pondus Globi in vacuo, B pondus ejus in Medio reſi
<
lb
/>
ſtente, D diameter Globi, F ſpatium quod ſit ad 4/3 D ut denſitas
<
lb
/>
Globi ad denſitatem Medii, id eſt, ut A ad A-B, G tempus quo
<
lb
/>
Globus pondere B abſque reſiſtentia cadendo deſcribit ſpatium F,
<
lb
/>
& H velocitas quam Globus hocce caſu ſuo acquirit. </
s
>
<
s
>Et erit H
<
lb
/>
velocitas maxima quacum Globus, pondere ſuo B, in Medio reſi
<
lb
/>
ſtente poteſt deſcendere, per Corol. 2, Prop. XXXVIII; & reſi
<
lb
/>
ſtentia quam Globus ea cum velocitate deſcendens patitur, æqua
<
lb
/>
lis erit ejus ponderi B: reſiſtentia vero quam patitur in alia qua
<
lb
/>
cunque velocitate, erit ad pondus B in duplicata ratione velo
<
lb
/>
citatis hujus ad velocitatem illam maximam
<
emph
type
="
italics
"/>
H,
<
emph.end
type
="
italics
"/>
&c. G, per Corol. 1,
<
lb
/>
Prop. XXXVIII. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>